優(yōu)化的Apriori算法應用于中風病的處方配伍規(guī)律研究
[Abstract]:Aim: to optimize the accuracy of mining results by introducing new parameters Kulc and IR on the basis of the traditional support and confidence model of association rules, and to compare and analyze the mining results before and after optimization. The results can be applied to the clinical teaching of modern Chinese medicine, the theoretical research and the application platform of TCM combined with big data and Internet. Methods: the SQL Server database was established for the information of stroke medical records, which is a hot research topic in the field of traditional Chinese medicine, and its prescription compatibility law was excavated and analyzed by using Apriori algorithm, and the program was compiled with Microsoft Visual Studio 2010. In order to avoid the appearance of pseudo-strong rule, the correlation measure parameter Kulc and the unbalanced ratio (IR) parameter are introduced to ensure that the rules with real strong correlation can be excavated. Combined with TCM theory, the optimized mining results are analyzed in TCM, and the compatibility law is determined. Results: by using Apriori algorithm and new parameters Kulc and IR, the compatibility of stroke prescription before and after optimization was obtained, and by comparing the mining results before and after optimization, it was found that the optimized combination could filter out many drug combinations with no strong correlation. The results of traditional Chinese medicine analysis show that the medicine is better in the treatment of apoplexy, which provides data support and theoretical basis for modern Chinese medicine treatment of apoplexy. Conclusion: by introducing the parameters of Kulc and IR, the compatibility rules of non-strong association can be filtered, the accuracy of association rules mining can be improved, and the compatibility law of modern TCM treatment of apoplexy can be obtained. The new method can also be applied to excavate the rule of diagnosis and treatment of other diseases, especially the disease which has not completely defined the law of drug use, which can provide theoretical support and teaching guidance for the study of TCM theory and clinical practice.
【學位授予單位】:山東中醫(yī)藥大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP311.13;R255.2
【參考文獻】
相關期刊論文 前10條
1 王凱;牛淑平;;近年來中風病中醫(yī)藥研究進展[J];中醫(yī)藥臨床雜志;2014年12期
2 蔡莉;;基于名老中醫(yī)Ⅱ型糖尿病醫(yī)案的數(shù)據(jù)挖掘研究[J];佳木斯教育學院學報;2013年11期
3 汪偉;鄒璇;詹雪;;論數(shù)據(jù)挖掘中的數(shù)據(jù)預處理技術[J];煤炭技術;2013年05期
4 張國民;;遺傳算法的綜述[J];科技視界;2013年09期
5 洪芳;何建成;曹雪濱;;人工神經網(wǎng)絡在中醫(yī)證候研究中的應用現(xiàn)狀與趨勢[J];遼寧中醫(yī)雜志;2013年01期
6 李健;盧朋;張瑞賢;信富榮;陳建新;唐仕歡;楊洪軍;;《中醫(yī)方劑大辭典》中治療肺痿方劑的用藥規(guī)律分析[J];中國實驗方劑學雜志;2012年10期
7 涂泳秋;陳國華;樸勝華;郭姣;;中醫(yī)藥科研中用到的數(shù)據(jù)挖掘方法綜述[J];醫(yī)學信息(上旬刊);2011年07期
8 李賽;聶莉芳;孫紅穎;;聶莉芳治療慢性腎功能衰竭經驗的關聯(lián)規(guī)則分析[J];中華中醫(yī)藥雜志;2011年07期
9 陳芳;朱敏;尚爾鑫;唐于平;陶靜;段金廒;;基于Apriori算法的四物湯類方組方特點分析[J];中華中醫(yī)藥雜志;2011年02期
10 李金廣;;數(shù)據(jù)挖掘中聚類算法研究綜述[J];中國科技信息;2010年17期
相關博士學位論文 前1條
1 陳少婷(Chan Siu Ting);中醫(yī)中風淵源芻議[D];廣州中醫(yī)藥大學;2014年
相關碩士學位論文 前4條
1 張凱;數(shù)據(jù)挖掘技術在醫(yī)療費用數(shù)據(jù)中的應用研究[D];北京郵電大學;2015年
2 馮正西;關聯(lián)規(guī)則的改進與應用研究[D];華中師范大學;2013年
3 方洪鷹;數(shù)據(jù)挖掘中數(shù)據(jù)預處理的方法研究[D];西南大學;2009年
4 馬麗偉;關聯(lián)規(guī)則算法研究及其在中醫(yī)藥數(shù)據(jù)挖掘中的應用[D];南京理工大學;2009年
,本文編號:2235638
本文鏈接:http://sikaile.net/zhongyixuelunwen/2235638.html