基于錐形束CT的牙齒髓腔分割算法研究
[Abstract]:The latest medical research has found that dental pulp deposition can be used to calculate the age of human body in forensic science, based on the popular oral CBCT (Cone Beam CT, conical beam CT imaging technology. How to accurately realize the three-dimensional tomographic image segmentation of pulp cavity is the premise of application. Due to the influence of noise interference, blurred tooth boundary and similar bone gray value between teeth and alveolar bone, there are many difficulties in the accurate segmentation of pulp cavity. PCNN (Pulse Coupled Neural Network, Pulse coupled neural network (PNN) has biological background, can extract effective information from complex background, has the characteristics of synchronous pulse release and global coupling, and its signal form and processing mechanism are more in line with the physiological basis of human visual nervous system. In this paper, based on the in-depth study of PCNN theory and application, an improved PCNN model is proposed to realize the accurate segmentation of three-dimensional tomographic sequence images of CBCT pulp cavity. The main work and innovations of this paper are as follows: (1) aiming at the complicated structure of the traditional PCNN model, a large number of manual setting parameters, unstable threshold attenuation and so on, this paper accepts some network structures by adjusting the PCNN. On the premise of ensuring its biological characteristics, an improved PCNN model is proposed, which optimizes the external input of neurons, the weight of connection input L and the attenuation mode of threshold. The experimental results show that the model effectively reduces the complexity of the algorithm. The description ability of pixel spatial information is improved. (2) aiming at the fuzziness of tooth image, the number of iterations of PCNN model is difficult to determine and needs to be set manually. In this paper, based on the spatial information of image pixels, the influence of iteration times on PCNN model segmentation algorithm is analyzed, and a criterion for determining the optimal number of iterations based on minimum cross entropy is given by using the information entropy optimization criterion. The improved PCNN model segmentation algorithm is realized to segment the pulp cavity image of CBCT teeth accurately.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:D919;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳劍波;;香港高校學(xué)生事務(wù)管理的模式與特點(diǎn)[J];浙江理工大學(xué)學(xué)報(bào);2016年06期
2 王鑫東;王博;;一種基于脈沖耦合神經(jīng)網(wǎng)絡(luò)計(jì)算的SAR圖像噪聲抑制方法[J];黑龍江科技信息;2016年08期
3 黃敏;羅萬波;李興華;萬幸;;醫(yī)學(xué)圖像分割技術(shù)[J];信息通信;2015年07期
4 鄧翔宇;馬義德;;基于PCNN的自動圖像分割[J];蘭州工業(yè)學(xué)院學(xué)報(bào);2014年03期
5 呂紅力;;基于多閾值算法融合的圖像分割[J];鄭州輕工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年02期
6 肖體喬;謝紅蘭;鄧彪;杜國浩;陳榮昌;;上海光源X射線成像及其應(yīng)用研究進(jìn)展[J];光學(xué)學(xué)報(bào);2014年01期
7 張翡;范虹;;基于模糊C均值聚類的醫(yī)學(xué)圖像分割研究[J];計(jì)算機(jī)工程與應(yīng)用;2014年04期
8 胡陽明;周大可;鹿樂;楊欣;;基于形變模型的三維人臉快速重建改進(jìn)算法[J];吉林大學(xué)學(xué)報(bào)(信息科學(xué)版);2012年06期
9 張石;董建威;佘黎煌;;醫(yī)學(xué)圖像分割算法的評價(jià)方法[J];中國圖象圖形學(xué)報(bào);2009年09期
10 唐英干;邸秋艷;趙立興;關(guān)新平;劉福才;;基于二維最小Tsallis交叉熵的圖像閾值分割方法[J];物理學(xué)報(bào);2009年01期
相關(guān)博士學(xué)位論文 前1條
1 李積英;融合量子衍生及DNA計(jì)算速率的智能算法在圖像分割中的研究[D];蘭州交通大學(xué);2014年
相關(guān)碩士學(xué)位論文 前5條
1 趙晗;脈沖耦合神經(jīng)網(wǎng)絡(luò)用于圖像分割若干問題研究[D];中國礦業(yè)大學(xué);2015年
2 張旦;基于自適應(yīng)PCNN模型的圖像處理[D];山東大學(xué);2015年
3 陳世洋;PCNN模型改進(jìn)及參數(shù)調(diào)整研究[D];河北工業(yè)大學(xué);2015年
4 李惠;基于分割和輪廓特征的醫(yī)學(xué)牙齒圖像處理算法研究[D];山東大學(xué);2014年
5 房華;脈沖耦合神經(jīng)網(wǎng)絡(luò)在圖像處理中的應(yīng)用研究[D];西安石油大學(xué);2010年
,本文編號:2486403
本文鏈接:http://sikaile.net/yixuelunwen/yundongyixue/2486403.html