基于口腔CT重建數(shù)據(jù)的牙齒分割與可視化研究
[Abstract]:In recent years, various medical imaging techniques have been developed rapidly, and various computer-aided diagnosis systems based on these techniques have been derived. The research of computer-aided systems for different purposes has become a hot topic in this field. Low dose oral CT is designed for dental and oral and maxillofacial health care and disease diagnosis and treatment of computer diagnostic assistance system, and in the oral CT process, Image segmentation and three-dimensional visualization are the key technologies to detect and treat diseases. Image segmentation is a traditional and challenging subject, which is the premise and foundation of computer aided analysis, medical image visualization and disease diagnosis. The medical image segmentation problem can be divided into two parts: one is the recognition of specific targets in the image and the other is the description and extraction of the integrity of the target region. Compared with general images, the diversity and complexity of medical images make it difficult for traditional segmentation methods to obtain ideal segmentation results. For the first time, Osher and Sethian have proposed level-set algorithms for reference to some important ideas in fluids. It is an effective numerical method to solve the problem of curve evolution and is stable and suitable for arbitrary dimensional space. The emergence of the level set method has greatly promoted the development of the active contour model. The combination of the level set method and the curve evolution model overcomes many inherent defects of the traditional Snake model and greatly expands the application field of the active contour model. Aiming at the multi-objective characteristic of tooth structure, the level set method based on Chan-Vese model is studied in this paper. By studying the traditional level set method and the level set method without reinitialization, the level set method is applied to the reconstruction of oral CT image. The target area (tooth) is extracted layer by layer to prepare for the subsequent image visualization. The visualization technology of medical image is an important application of computer graphics and image processing in biomedical engineering. In medicine, the tissues and pathological parts of human body can be displayed in three-dimensional form, which can be helpful for the clinical diagnosis and treatment of doctors. Doctors can obtain a great deal of information about the internal anatomy of human body, and obtain the relative spatial relationship between tissues and organs, which greatly promotes the development of medicine. In this paper, the basic principle of Marching Cubes algorithm (MC) is studied, and a method of extracting isosurface and detecting volume elements is proposed by using. Marching Cubes algorithm of dental 3D structure reconstruction based on oral CT, which is a widely used 3D reconstruction algorithm. According to the corresponding structure of teeth, the Marching Cubes algorithm can be adjusted properly to get a better effect of the three-dimensional structure of the tooth.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:R816.98;TP391.41
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周浩;陳萬(wàn)春;殷興良;;高超聲速飛行器滑行航跡優(yōu)化[J];北京航空航天大學(xué)學(xué)報(bào);2006年05期
2 董艷;;有限維賦范線性空間的性質(zhì)[J];成都電子機(jī)械高等�?茖W(xué)校學(xué)報(bào);2006年01期
3 殷羽;;Lipschitz函數(shù)的廣義導(dǎo)數(shù)[J];赤峰學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年12期
4 方玲;雷淵;;矩陣方程AXB=D的中心對(duì)稱最小二乘解及最佳逼近的迭代解法[J];長(zhǎng)沙大學(xué)學(xué)報(bào);2008年02期
5 白鵬;謝文俊;劉君華;;支持向量機(jī)在混合氣體種類光譜識(shí)別中的應(yīng)用[J];光電工程;2006年08期
6 周恒亮;控制變量為非線性的松馳系統(tǒng)時(shí)間最優(yōu)控制[J];淮海工學(xué)院學(xué)報(bào)(自然科學(xué)版);2003年04期
7 方玲;李玻;付詩(shī)祿;林瓊;;不相容矩陣方程AXB=D的反中心對(duì)稱迭代解[J];后勤工程學(xué)院學(xué)報(bào);2010年04期
8 劉浩瀚;劉志斌;;對(duì)偶定理在運(yùn)輸問(wèn)題中的應(yīng)用[J];經(jīng)濟(jì)研究導(dǎo)刊;2009年10期
9 袁敏;劉宣會(huì);;基于Lagrange方法的資產(chǎn)與負(fù)債的管理問(wèn)題[J];佳木斯大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年05期
10 楊家穩(wěn);孫合明;鐘青;胡珊珊;;多維聯(lián)想記憶神經(jīng)網(wǎng)絡(luò)在圖像回憶中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2010年04期
相關(guān)博士學(xué)位論文 前9條
1 張英朝;基于全局視圖的虛擬組織信息共享方法與應(yīng)用研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2004年
2 于亞璇;非線性方程精確解和一類空間的凸性與光滑性[D];大連理工大學(xué);2006年
3 龔麗莎;關(guān)于子矩陣約束下矩陣方程問(wèn)題的研究[D];湖南大學(xué);2006年
4 劉建林;不定期船運(yùn)輸系統(tǒng)優(yōu)化研究[D];上海海事大學(xué);2006年
5 秦訓(xùn)鵬;燒結(jié)材料三維變形廣義上限元理論與應(yīng)用研究[D];武漢理工大學(xué);2008年
6 謝善斌;基于瞬變流動(dòng)分析的給水管網(wǎng)事件模型基礎(chǔ)研究[D];北京工業(yè)大學(xué);2009年
7 李本星;部分K空間采樣MR快速重建與相位解纏繞[D];南方醫(yī)科大學(xué);2009年
8 徐文星;混沌粒子群優(yōu)化算法及應(yīng)用研究[D];北京化工大學(xué);2012年
9 李潤(rùn)鑫;約束向量?jī)?yōu)化問(wèn)題的近似拉格朗日乘子和KKT條件[D];云南大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 李水勤;矩陣方程A~HXA=B的反問(wèn)題[D];河南理工大學(xué);2011年
2 李晶;一般風(fēng)險(xiǎn)測(cè)度的最優(yōu)再保險(xiǎn)研究[D];暨南大學(xué);2011年
3 李鴻鵬;錐臨界角及P錐的若干性質(zhì)[D];東北林業(yè)大學(xué);2011年
4 李德峰;肇慶供電局電力變壓器狀態(tài)檢修策略的研究[D];華南理工大學(xué);2011年
5 姜嘵玲;基于變分水平集的赤潮藻顯微圖像分割方法研究[D];中國(guó)海洋大學(xué);2011年
6 朱志偉;數(shù)學(xué)模型在高校招生預(yù)測(cè)中的應(yīng)用[D];青島理工大學(xué);2010年
7 石文強(qiáng);對(duì)流傳熱強(qiáng)化的最小作用量原理分析[D];哈爾濱工業(yè)大學(xué);2011年
8 侯飛飛;不可微復(fù)合多目標(biāo)規(guī)劃最優(yōu)性條件的研究[D];遼寧工程技術(shù)大學(xué);2011年
9 楊迎春;基于偏微分方程的圖像去噪算法研究[D];中北大學(xué);2012年
10 屈紹建;求解DC規(guī)劃的全局收斂性算法和近似點(diǎn)算法[D];南京航空航天大學(xué);2005年
,本文編號(hào):2378538
本文鏈接:http://sikaile.net/yixuelunwen/yundongyixue/2378538.html