基于CT圖像的下脛腓聯(lián)合三維有限元模型構(gòu)建
本文選題:下脛腓聯(lián)合 + 三維有限元 ; 參考:《安徽醫(yī)科大學(xué)》2013年碩士論文
【摘要】:目的以一名男性志愿者的右足螺旋CT掃描圖像為依據(jù),利用Mimics、Free-Form、ANSYS等軟件構(gòu)建下脛腓聯(lián)合三維有限元模型,并對其有效性進行驗證,使其能正確反映足踝部的力學(xué)特性,為進一步的生物力學(xué)研究提供方便快捷的數(shù)字化平臺。 方法選取一健康男性志愿者,30歲,身高170cm,體重60kg,自右踝關(guān)節(jié)以上20cm至足底進行螺旋CT掃描,掃描參數(shù)為:電壓120KV,,電流240mA,重建層厚0.625mm,床進速度0.700mm/s,矩陣512×512,最后將CT掃描數(shù)據(jù)以Dicom格式存儲;將Dicom格式的數(shù)據(jù)文件導(dǎo)入Mimics10.01軟件,經(jīng)蒙皮、分割、光滑等步驟重建出完整的足踝部骨骼及外周軟組織的三維結(jié)構(gòu),并以點云的形式輸入逆向工程軟件Free-Form中生成幾何實體模型,再將實體模型以IGES格式導(dǎo)入到有限元分析軟件ANSYS12.0中去;骨骼、外部軟組織囊模型采用三維十節(jié)點四面體結(jié)構(gòu)實體單元Solid92進行模擬;在踝關(guān)節(jié)的接觸面兩側(cè)根據(jù)關(guān)節(jié)間隙分別建立了0.5mm的關(guān)節(jié)軟骨,其它關(guān)節(jié)軟骨則采用僅受壓的三維桿單元進行模擬;韌帶按解剖數(shù)據(jù)建模,采用只受拉不受壓的線單元Link10來模擬,最終生成下脛腓聯(lián)合的三維有限元模型。對此模型進行力學(xué)加載,將脛腓骨遠端的上表面及軟組織完全固定,在模型上端加載300N的垂直載荷,進行求解得出正常狀態(tài)下人足中立相時足底的壓力分布情況;隨后在同樣的約束、加載條件下,對同一志愿者應(yīng)用足底壓力測量系統(tǒng)測量足底壓力分布情況,并經(jīng)結(jié)果與有限元模型的相應(yīng)預(yù)測結(jié)果進行比較,從而驗證模型正確性。 結(jié)果建立了包括全部骨骼、主要韌帶、皮膚及軟組織在內(nèi)的人足有限元模型,整個三維有限元模型共生成了81583個四面體二階單元,130865個節(jié)點。本模型預(yù)測的足底接觸壓力與實測的接觸壓力在分布趨勢、數(shù)值大小上基本一致,高接觸壓力都發(fā)生在跟骨區(qū)域和第1-5跖骨頭下方,且接觸壓力最大峰值分別是0.240MPa與0.230MPa,初步證明本模型是有效的。 結(jié)論本模型基于CT掃描數(shù)據(jù)利用Mimics、Free-Form、ANSYS等軟件構(gòu)建出了包括骨骼、主要韌帶、皮膚及軟組織在內(nèi)的三維有限元模型,較客觀地反映了其解剖結(jié)構(gòu)和力學(xué)特性,模型經(jīng)驗證是有效的,可為下脛腓聯(lián)合的進一步力學(xué)研究提供良好的數(shù)字化平臺。
[Abstract]:Objective to construct a three-dimensional finite element model of the tibiofibular syndesmosis based on the spiral CT images of a male volunteer, using the software of MimicsFree-Form ANSYS, and to verify its validity so that it can accurately reflect the mechanical properties of the ankle. It provides a convenient and fast digital platform for further biomechanical research. Methods A healthy male volunteer, aged 30 years, who was 170 cm tall and weighed 60 kg, was scanned by spiral CT from 20cm above the right ankle to the sole of the foot. The scanning parameters are as follows: voltage 120kV, current 240mA, reconstruction layer thickness 0.625mm, bed speed 0.700mm / s, matrix 512 脳 512. finally, CT scan data is stored in Dicom format, and the data file of Dicom format is imported into Mimics10.01 software. Smooth steps such as reconstruction of the complete foot and ankle bones and peripheral soft tissue three-dimensional structure, and point cloud in the form of the reverse engineering software Free-Form to generate geometric entity model. Then the solid model is imported into the finite element analysis software ANSYS12.0 in IGES format, and the three-dimensional 10-node tetrahedron structure entity element Solid92 is used to simulate the bone and external soft tissue capsule model. According to the joint space, the articular cartilage of 0.5mm was established on both sides of the contact surface of the ankle joint, and the other articular cartilage was simulated by the compression only three-dimensional bar element, the ligament was modeled according to the anatomical data. Finally, a three-dimensional finite element model of the tibiofibular joint is generated by using the line element Link10, which is only subjected to tension and compression. Under mechanical loading, the upper surface and soft tissue of the distal tibia and fibula were completely fixed, and the vertical load of 300N was loaded on the upper end of the model. Then, under the same constraint and loading condition, the plantar pressure distribution was measured by the plantar pressure measurement system, and the results were compared with the corresponding prediction results of the finite element model to verify the correctness of the model. Results the finite element model of human foot including all bones, main ligaments, skin and soft tissue was established. A total of 81583 tetrahedron second-order elements and 130865 nodes were generated in the whole three-dimensional finite element model. The plantar contact pressure predicted by this model is basically consistent with the measured contact pressure. The high contact pressure occurs in the calcaneal region and below the head of the 1-5 metatarsal bone. The maximum contact pressure is 0.240MPa and 0.230 MPa respectively, which proves that the model is effective. Conclusion based on CT scan data, the 3D finite element model including bone, main ligament, skin and soft tissue was constructed by using the software of Mimicsl Free-Form ANSYS, which objectively reflects the anatomical structure and mechanical properties of the model. The model is proved to be effective. It can provide a good digital platform for further mechanical research of the tibiofibular syndesmosis.
【學(xué)位授予單位】:安徽醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:R681;R816.8
【參考文獻】
相關(guān)期刊論文 前10條
1 胡小春;孫波;郭松青;王希杰;趙海君;;足部復(fù)合模型建立及其應(yīng)用[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2007年09期
2 劉立峰 ,蔡錦方 ,梁進;骨折后后關(guān)節(jié)面壓縮的跟骨與距骨在步態(tài)過程應(yīng)力分布的三維有限元研究[J];解放軍醫(yī)學(xué)雜志;2003年11期
3 董驤,樊瑜波,張明;人體足部生物力學(xué)的研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2002年01期
4 陶凱;王冬梅;王成燾;王旭;;韌帶和跖腱膜在足部有限元分析中的力學(xué)作用[J];生物醫(yī)學(xué)工程學(xué)雜志;2008年02期
5 牛文鑫;楊云峰;俞光榮;丁祖泉;;人體足部三維有限元模型的有效構(gòu)建方法及其合理性的實驗分析研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2009年01期
6 王劍利;潘朝暉;袁勇;楊華山;;足骨三維有限元模型對足跖骨缺損重建的指導(dǎo)意義[J];實用手外科雜志;2007年01期
7 傅棟;靳安民;;應(yīng)用CT斷層圖像快速構(gòu)建人體骨骼有限元幾何模型的方法[J];中國組織工程研究與臨床康復(fù);2007年09期
8 潘朝暉,王劍利,蔣萍萍,王成琪,許瑞杰;跖骨缺損及重建的有限元分析[J];醫(yī)用生物力學(xué);2004年03期
9 張明;張德文;余嘉;樊瑜波;;足部三維有限元建模方法及其生物力學(xué)應(yīng)用[J];醫(yī)用生物力學(xué);2007年04期
10 李建設(shè);顧耀東;Mark Lake;James Ren;曾衍鈞;;踏跳瞬間足后部骨骼的三維有限元分析[J];醫(yī)用生物力學(xué);2008年02期
本文編號:1920681
本文鏈接:http://sikaile.net/yixuelunwen/yundongyixue/1920681.html