CRF對大鼠海馬神經(jīng)元結(jié)構(gòu)的直接效應(yīng)及機(jī)制研究
[Abstract]:Stress is defined biologically as a variety of physiological changes, including homeostasis of the internal environment and activation of the pituitary adrenal axis. The corticotropin releasing factor (CRF) is released by the hypothalamus under stress conditions to activate the hypothalamus-pituitary-adrenal axis (HPA axis), in which case the negative feedback loop can inhibit further synthesis and release of the CRF, However, in the case of abnormal HPA axis regulation, negative feedback dysfunction, excessive increase of plasma glucocorticoid synthesis release, and eventually lead to the damage of neurons. However, it has been found that in addition to neuronal damage caused by HPA axis, CRF can also cause damage to hippocampal neurons through interaction with central CRF receptors. Therefore, the damage effect and possible mechanism of CRF on hippocampal neurons can be explored, which can provide new theory and experimental basis for the molecular mechanism of the central nervous system of stress injury. Objective: To study the molecular mechanism of CRFR1 receptor signaling pathway leading to the damage of central nervous system (CNS) and to reveal the pathophysiology of neuropsychiatric disorders associated with chronic stress. The mechanism is to provide new theory and experiment to clarify the molecular mechanism of chronic stress injury central nervous system. Methods: 1. Immunofluorescence method was used to analyze the effect of CRF on hippocampal neuron structure: To culture primary hippocampal neurons to the fifth day, CRF (0.02. mu.M, 0.2. mu.M, 2. mu.M) to treat the primary cultured rat hippocampal neurons, and to continue the culture. The changes of the cell structure of hippocampal neurons were observed under the microscope, and then the hippocampal neurons were labeled with Mitogen Activated Protein-2 (Mitogen Activated Protein, MAP2), and the hippocampal neurons were observed by immunofluorescence. The changes of hippocampal neurons were treated with CRFR1 specific antagonist (DMP696), and the changes of hippocampal neuronal cell structure in the control group, CRF treatment group and CRF + specific antagonist (DMP696) were observed under the same microscope, then the hippocampus was labeled with MAP2. Observation of hippocampal neurons by neuron-derived dendritic and immunofluorescence method The effect of CRF on the activity of hippocampal neurons was determined by the change of dendritic cells. Blank group (no cells), control group (no drug group), CRF (0.002. mu.M, 0.2. mu.M, 2. mu.M) Treatment Group. Culture to Day 10 S The cell viability was measured by RB method. 3. Western blot analysis was closely related to neuronal growth: cultured primary hippocampal neurons to day 5, CRF (0.02. mu.M, 0.2. mu.M, 2. mu.M) treated primary cultured rat hippocampal neurons. The changes of cAMP response element binding protein (CREB), microtubule-associated protein (Tau) phosphorylation level, and postsynaptic density protein-95 (PS) were analyzed by Western blot. D95) Changes in protein levels, observing whether CRF is above hippocampal neuronal cells Protein kinase A (PKA), inositol (MAPK), 1, 4, 5-triphosphoinositide (MAPK), 1, 4, 5-triphosphoinositide (IP3) and phospholipase C (Pho) were used in primary cultured rat hippocampal neurons. pholipase C, PLC The changes of CREB and Tau phosphorylation were detected by Western blot, and the changes of MAP2 and PSD95 protein levels were detected by Western blot. The change of the expression level of key molecular mRNA closely related to neuronal growth was analyzed by RT-PCR. The primary cultured rat hippocampal neurons were treated with CRF and DMP696. hippocampal neurons continue to be cultured for 10 days. RT-PCR detect CREB, Tau, MAP2, Changes in the expression of PSD95mRNA. The changes of cAMP content in hippocampal neurons were detected by cyclic voltammetry (cAMP) release test. The changes of cAMP content in hippocampal neurons were detected in 5, cylic Adenosine monophate (cAMP) release assay. The primary hippocampal neurons were cultured for the tenth day, and the cAMP release assay was used to detect the CRF stimulating sea. The content of cAMP in hippocampal neurons was changed, and DMP696 was tested to stimulate the sea. The effect of cAMP on the release of cAMP in hippocampal neurons. Results: 1, 2. m CRF can induce the decrease of dendritic density in hippocampal neurons, and the specific antagonist (DMP696) can be used to treat the cells. The inhibitory effect of CRF on the cell viability of hippocampal neurons was inhibited, and the activity of CRF (0.2. mu.M, 2. mu.M) cells was 71. 6 鹵 3.1%, 72. 6-3, respectively. 5% (n = 3, ** * P0. 001 vs. control). 3, 2. m MCRF down-regulated MAP2, P-CREB protein levels in hippocampal neurons, up-regulated PSD95, P-Tau protein levels; CRFR1 specific antagonist (DMP696) antagonized the MAP2, P-CR caused by CRF. Down regulation of EB protein and upregulation of PSD95, P-Tau protein; PKA specific inhibitor H89 antagonized CR Down-regulation of MAP2 protein induced by F and upregulation of P-Tau protein level. The expression level of PSD95 and MAP2 in hippocampal neurons was changed with protein water. There was no significant change in the level of mRNA expression of Tau and CREB. 5. cAMP release assay showed that CRF could regulate the cAMP content of hippocampal neurons in concentration-dependent manner (P = (3.157, 0. 133), 10-9M, n = 3), and the specific antagonist, DMP696, could reduce 2. m cAMP Release of hippocampal neurons induced by RF Conclusion: CRF induced hippocampal neuronal structural damage by the action of CRFR1, its function and downregulation MAP2. and the protein level of P-CREB is correlated with the level of PSD95 and P-Tau protein. The CRF promotes the release of cAMP, suggesting that the G protein coupled by CRFR1 is Gs.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:R96
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳永君;張猛;王璞;朱心紅;高天明;;Neuregulin-1溫度依賴性抑制小鼠海馬腦片CA1區(qū)的長時程增強(qiáng)[J];南方醫(yī)科大學(xué)學(xué)報(bào);2008年10期
2 Urmila M Aswar;Padmaja P Kalshetti;Suhas M Shelke;Sharad H Bhosale;Subhash L Bodhankar;;Effect of newly synthesized 1,2,4-triazino[5,6-b]indole-3-thione derivatives on olfactory bulbectomy induced depression in rats[J];Asian Pacific Journal of Tropical Biomedicine;2012年12期
3 李大鵬;劉冰心;王啟之;;腸易激綜合癥患者結(jié)腸組織中促腎上腺皮質(zhì)激素釋放因子受體表達(dá)的研究[J];中國組織化學(xué)與細(xì)胞化學(xué)雜志;2013年06期
4 Xun-Xun CHU;Joshua Dominic Rizak;Shang-Chuan YANG;Jian-Hong WANG;Yuan-Ye MA;Xin-Tian HU;;A natural model of behavioral depression in postpartum adult female cynomolgus monkeys (Macaca fascicularis)[J];動物學(xué)研究;2014年03期
5 葛治娟;馬曉蕓;鄭建全;;促腎上腺皮質(zhì)激素釋放因子對海馬神經(jīng)元樹突生長發(fā)育的影響[J];國際藥學(xué)研究雜志;2014年06期
6 舒先濤;陳運(yùn)才;;海馬促腎上腺皮質(zhì)激素釋放因子與神經(jīng)元樹突發(fā)育[J];解剖學(xué)雜志;2008年03期
7 徐盟;王濤;金鶯;田偉;;5-脂氧化酶與阿爾茨海默病[J];解剖科學(xué)進(jìn)展;2013年05期
8 董玉霞;孫曉紅;何悅;楊洋;姜源;馬超;劉曉楠;李慧源;;抑郁癥大鼠海馬BDNF及其受體TrkB和p75NTR的表達(dá)及米氮平的調(diào)節(jié)作用[J];腦與神經(jīng)疾病雜志;2014年03期
9 安磊;李靜;張有志;李云峰;;糖皮質(zhì)激素受體:抑郁癥治療的潛在靶標(biāo)[J];軍事醫(yī)學(xué);2014年11期
10 陳學(xué)群;趙陽;杜繼曾;;低氧應(yīng)激與腦-內(nèi)分泌-免疫網(wǎng)絡(luò)調(diào)節(jié)——CRF和CRFR1的主導(dǎo)調(diào)控作用[J];生理科學(xué)進(jìn)展;2013年05期
相關(guān)博士學(xué)位論文 前10條
1 陶然;SIAT8B和PDLIM5基因與中國漢族人精神分裂癥發(fā)生的關(guān)聯(lián)分析[D];中國科學(xué)院研究生院(上海生命科學(xué)研究院);2007年
2 郭素芹;兒童精神分裂癥與神經(jīng)發(fā)育異常關(guān)系的研究[D];中南大學(xué);2007年
3 王強(qiáng);首發(fā)精神分裂癥的神經(jīng)認(rèn)知功能和分子遺傳學(xué)研究[D];四川大學(xué);2006年
4 王育紅;韁核負(fù)反饋通路在海洛因精神依賴中作用和機(jī)制研究[D];中南大學(xué);2008年
5 郝以輝;精神分裂癥患者同胞對腦白質(zhì)的磁共振研究[D];中南大學(xué);2009年
6 王曉晟;人腦海馬體積測量及其在精神疾病中的應(yīng)用[D];中南大學(xué);2012年
7 王利鋒;兒童期創(chuàng)傷相關(guān)抑郁癥的靜息態(tài)腦功能網(wǎng)絡(luò)研究[D];中南大學(xué);2013年
8 白玫;慢性應(yīng)激誘發(fā)抑郁的多巴胺能神經(jīng)通路異常機(jī)制[D];中南大學(xué);2013年
9 王曦;妊娠期間歇低氧誘導(dǎo)大鼠子代類焦慮樣行為的CRH1型受體表觀遺傳學(xué)機(jī)制研究[D];浙江大學(xué);2013年
10 孔繁平;神經(jīng)肽CRH作為急性高原低氧應(yīng)激損傷的生物標(biāo)志分子研究[D];浙江大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 劉新;促腎上腺皮質(zhì)激素釋放因子對人膠質(zhì)瘤U87MG細(xì)胞增殖及p53表達(dá)的相關(guān)性研究及意義[D];河北醫(yī)科大學(xué);2013年
2 馬超瓊;結(jié)合基于體素的形態(tài)學(xué)分析和靜息態(tài)fMRI對抑郁癥的研究[D];電子科技大學(xué);2013年
3 孫霞;PAX6基因單核苷酸多態(tài)性與精神分裂癥的關(guān)聯(lián)性研究[D];天津醫(yī)科大學(xué);2013年
4 楊遙;REM睡眠剝奪對小鼠海馬tau蛋白磷酸化的影響[D];石河子大學(xué);2013年
5 劉靜;間斷性缺氧對小鼠海馬tau蛋白磷酸化的動態(tài)影響[D];石河子大學(xué);2013年
6 王蕓;CPZ誘導(dǎo)精神分裂癥模型小鼠海馬脫髓鞘改變與行為學(xué)改變關(guān)系的研究[D];重慶醫(yī)科大學(xué);2013年
7 蘇虹;微波輻射對大鼠回腸的形態(tài)學(xué)改變及其作用機(jī)制研究[D];福建醫(yī)科大學(xué);2012年
8 朱禮星;長期噪聲暴露對大鼠海馬及皮層tau蛋白磷酸化的影響[D];天津體育學(xué)院;2013年
9 侯平;銅離子及銅相關(guān)蛋白CUTA在APP表達(dá)及Aβ生成中的作用研究[D];廈門大學(xué);2014年
10 牟鵬飛;與老年性癡呆相關(guān)基因TREM2的轉(zhuǎn)錄調(diào)控研究[D];廈門大學(xué);2014年
,本文編號:2287991
本文鏈接:http://sikaile.net/yixuelunwen/yiyaoxuelunwen/2287991.html