外磁場作用下磁性載藥顆粒的聚集性研究
本文選題:藥物靶向遞送 切入點:磁性載藥微粒 出處:《重慶大學》2014年碩士論文 論文類型:學位論文
【摘要】:傳統(tǒng)的藥物傳遞系統(tǒng)通常采取靜脈注射的方式將藥物運送到血管中,然后通過血液自身的流動將注射的藥物帶動到全身以及病變的區(qū)域,由于藥物分散到全身,在病變區(qū)域的相對濃度較低,所能達到的治療效果相對較低,可能導致治療周期性延長,治愈效果減弱。如欲獲得更理想的治療效果,就必須加大藥物劑量,這樣就能在目標區(qū)域得到治療的理想濃度,但是藥物對正常細胞會產(chǎn)生負面效果,對人體帶來一定程度的損傷。為了克服傳統(tǒng)醫(yī)學上的這些問題,人們提出了許多藥物靶向遞送的方法,但是這些方法都還處于理論和模擬階段,應用到臨床中尚需時日。其中的一種方法,即將治療藥物包裹到磁性納米顆粒上,然后通過外部條件的控制有效地實現(xiàn)顆粒在體內(nèi)有目的的傳送、聚集和對已經(jīng)病變的區(qū)域?qū)崿F(xiàn)靶向性的治療。實用上,可將治療藥物裹覆在集群磁性顆粒的表面,通過外部放置磁場的定向引導,最終將藥物遞送到體內(nèi)發(fā)生病變的區(qū)域目的性的釋放。如此不僅降低了傳統(tǒng)遞送的缺點以及毒副作用,而且更直接地增加了局部區(qū)域的藥物濃度,有利于提高治療,降低藥物對正常細胞的副作用。這些藥物靶向輸運的優(yōu)越性無疑對包括癌癥在內(nèi)的疾病的治療具有巨大的應用前景和市場需求。 本文介紹了在血液的粘性和外磁場作用下載藥物微粒在血管中的流動、聚集等力學特性,建立了一個數(shù)學模型。進而忽略顆粒的重力、浮力等影響以及顆粒之間的相互作用,重點分析了粘性阻力和磁場力對顆粒流動的作用,提出了載體顆粒的流動模型。模型從理論上描述了磁性載體顆粒在血管中流動時磁矩對顆粒軌跡的影響以及微粒半徑對顆粒捕捉效率以及與磁場強度的關系。借助Matlab數(shù)值分析了磁性載體微粒的運動過程;用計算流體力學方法和Fluent軟件模擬了磁矩、顆粒半徑等對磁顆粒捕獲的作用;仿真結(jié)果與數(shù)值結(jié)果基本一致,得到了三維空間中不同條件的捕獲效率。 由于外部磁場條件的導向,,取得了治療藥物目的性聚集的效果。數(shù)學模型模擬結(jié)果和仿真結(jié)果有相似的顆粒聚集特征。因此,本文中提出的數(shù)學模型在一定條件下描述了載藥顆粒的流動、聚集與外部磁場強度的關系。利用所提出的流體動模型分析了磁性載體的流動與顆粒半徑和磁矩的關系,可為磁性藥物靶向遞送的應用提供參考。
[Abstract]:The traditional drug delivery system usually carries drugs into the blood vessels by intravenous injection, and then drives the injected drugs to the whole body and the diseased areas through the flow of the blood itself, because the drugs are dispersed throughout the body. The relative concentration in the diseased area is relatively low and the therapeutic effect is relatively low, which may lead to the prolongation of the treatment cycle and the weakening of the cure effect. If you want to obtain a better therapeutic effect, you must increase the dosage of the drug. In this way, the ideal concentration of treatment can be obtained in the target area, but the drug will have a negative effect on normal cells and cause a certain degree of damage to the human body. In order to overcome these problems in traditional medicine, Many methods of targeted delivery of drugs have been proposed, but these methods are still in the theoretical and simulation stages and will take some time to be applied to clinical applications. One of them is that therapeutic drugs are encapsulated on magnetic nanoparticles. Then through the control of external conditions, the particles can be effectively transported, aggregated and targeted treatment of the diseased areas in vivo. In practice, the therapeutic drugs can be coated on the surface of the cluster magnetic particles. Through the directional guidance of the external magnetic field, the drug is eventually delivered to the disease-causing region of the body for purposeful release, which not only reduces the disadvantages of traditional delivery, but also reduces the side effects. And more directly increases the concentration of drugs in local areas, which is helpful to improve the treatment. The advantages of targeted delivery of these drugs undoubtedly have great application prospects and market demand for the treatment of diseases including cancer. In this paper, the flow and aggregation of drug particles in blood vessels are introduced, and a mathematical model is established. The effects of gravity and buoyancy of particles and the interaction between particles are ignored. The effects of viscous resistance and magnetic field force on particle flow are emphatically analyzed. A flow model of carrier particles is proposed, which theoretically describes the effect of magnetic moment on particle trajectory and the relationship between particle radius and particle capture efficiency and magnetic field intensity. The moving process of magnetic carrier particles is analyzed numerically by Matlab. The effect of magnetic moment and particle radius on magnetic particle capture is simulated by using computational fluid dynamics method and Fluent software. The simulation results are in good agreement with the numerical results, and the capture efficiency of different conditions in three-dimensional space is obtained. Due to the guidance of external magnetic field conditions, the therapeutic effect of targeted drug aggregation is achieved. The simulation results of the mathematical model and the simulation results have similar particle aggregation characteristics. The mathematical model proposed in this paper describes the relationship between the flow, aggregation and external magnetic field intensity of the drug-loaded particles under certain conditions. The relationship between the flow of the magnetic carrier and the particle radius and magnetic moment is analyzed by using the proposed fluid dynamic model. It can provide reference for the application of magnetic drug targeted delivery.
【學位授予單位】:重慶大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:R943
【參考文獻】
相關期刊論文 前10條
1 魏衍超,楊連生;磁性生物高分子微球的制備方法和研究進展[J];功能材料;2000年05期
2 徐華,宋濤;磁性藥物靶向治療的進展[J];國外醫(yī)學.生物醫(yī)學工程分冊;2004年01期
3 張勝,吳漢江,凌天牖;平陽霉素磁性微球的制備及特性檢測[J];湖南醫(yī)科大學學報;2003年02期
4 張良珂;侯世祥;毛聲俊;魏大鵬;宋相容;;受體介導米托蒽醌白蛋白納米粒腫瘤細胞靶向性研究[J];四川大學學報(醫(yī)學版);2006年01期
5 李民勤,徐慧顯,左榘,姬昂,何炳林,龐雁,黃建英,牛瑞芳;葡聚糖免疫磁性毫微粒的制備及作為復合靶向載體研究[J];中國科學(B輯 化學);1996年03期
6 謝民強,陳帥君,徐雪青,李仲漢,沈輝,許家瑞;兩種順鉑磁性納米顆粒制備及其特性的比較[J];科學通報;2005年19期
7 劉儒勛;高巍;;數(shù)值模擬方法在體液流動研究中的應用與展望[J];力學進展;2008年04期
8 石可瑜,李朝興,何炳林;磁導向阿霉素-羧甲基葡聚糖磁性毫微粒的毒性的研究[J];生物醫(yī)學工程學雜志;2003年02期
9 董廣星,陳旭;靶向藥物阿霉素抗腫瘤研究新進展[J];天津藥學;2003年02期
10 劉新玲,李筱榮,常津,劉曉燕;5-Fu納米毫微粒的制備及體外對晶狀體上皮細胞增生的抑制作用[J];眼科新進展;2005年04期
相關博士學位論文 前1條
1 劉菡萏;磁性藥物靶向遞送的動力學研究[D];上海交通大學;2008年
本文編號:1643587
本文鏈接:http://sikaile.net/yixuelunwen/yiyaoxuelunwen/1643587.html