阿托伐他汀對急性心肌梗死大鼠心肌炎癥和纖維化反應相關Notch1與TGF-β-Smad信號通路的作用以及對冠心病患者血漿
[Abstract]:BACKGROUND: Most of the causes of acute myocardial infarction (AMI) are unstable atherosclerotic plaque rupture, resulting in thrombosis, which interrupts coronary flow. The involvement of a large number of inflammatory factors in the initiation and development of AMI is an important factor, although patients now use antithrombotic drugs or take them. Coronary artery interventional therapy can early revascularize or reperfusion myocardium, but many patients also have different degrees of left ventricular remodeling, and even heart failure. Injured or infarcted myocardial cells release inflammatory factors, which in turn trigger inflammatory reactions in myocardial remodeling and myocardial fibrosis play an important role. To prevent or reduce the occurrence and development of plaque, one of the key links in the prevention and treatment of coronary heart disease in the future is to inhibit inflammatory reaction and other adverse factors. However, there are no recognized drugs and other effective methods for the treatment of these pathological links. It has been reported that atorvastatin also plays an anti-inflammatory role in the treatment of cardiovascular diseases such as coronary heart disease. However, whether atorvastatin has beneficial effects on the development of myocardial inflammation and fibrosis in AMI rats, and whether it affects cardiac function and hemodynamic status in AMI rats remains to be verified. Whether atorvastatin plays the above beneficial role by regulating TGF-beta-smad and Notch1 Signaling pathways remains to be determined. In addition, the changes of plasma inflammatory and fibrotic factors galectin-3 (Galectin-3) and the effect of statin on Galectin-3 in patients with coronary heart disease and the changes of Galectin-3 in patients with atrial fibrillation (AF) before and after radiofrequency ablation (RFCA) have not been reported. Changes of cardiac function on the first day after modeling and effects of atorvastatin or losartan potassium on plasma inflammatory factors TNF-a and IL-1 beta in rats on the fifth day after modeling; 2. Effects of atorvastatin or losartan potassium on cardiac function and hemodynamics and extracellular matrix metalloproteinase mmp2, MMP9 in rats with AMI on the fourteenth day after modeling were observed. The expression of TIMP2 protein and the changes of plasma cardiac function marker BNP were observed. 3. The effects of atorvastatin or losartan potassium on cardiac function and hemodynamics were observed on 28 days after AMI in rats, and the expressions of collagen I, Collagen III and notch1, TGF-beta 1, Smad2, Smad7, Galectin-3 protein and plasma BN were observed. To observe whether atorvastatin or losartan potassium can inhibit myocardial inflammation and fibrosis in rats with AMI by inhibiting notch1-TGF-beta-smad signaling pathway; 4. To observe the effects of atorvastatin or losartan potassium on myocardial cell structure and myocardial collagen fibers in rats with AMI on the 14th and 28th days after modeling; 5. Clinical trial: To observe the patients with coronary heart disease. The changes of plasma inflammatory factor Galectin-3 in patients with stable angina pectoris (SAP), unstable angina pectoris (UAP) and AMI and their correlation with the severity of the disease were observed. The changes of Galectin-3 in patients with AMI before and after treatment with atorvastatin 80 mg were observed. Methods: 1. Rats were divided into four groups: control group (sham operation group): isolated anterior descending branch without ligation; myocardial infarction group (AMI modeling group): ligation of anterior descending branch of coronary artery without drug therapy; statin group: ligation of anterior descending branch + atrovir Statin (10mg/kq/d) treatment; Losartan group: anterior descending branch ligation + losartan potassium treatment (5mg/kq/d). Except for the control group rats, the EF of the other groups were all less than 50%. The changes of cardiac function and hemodynamics were evaluated on the 14th and 28th day after modeling, and the changes of myocardial inflammation and fibrosis were observed after AMI. 2. Elisa method was used. The changes of plasma inflammatory factors TNF-a, IL-1 beta and BNP were observed on the fifth day after AMI modeling and on the fourteenth and twenty-eighth days after AMI modeling. 3. Biological Q-PCR, Western blot and/or immunohistochemical methods were used to detect the levels of inflammatory factors TNF-a, IL-1 beta, Galectin-3, Collagen I, Collagen III and metal matrix in myocardial cells of rats after AMI modeling. Proteinase MMP 2, MMP 9 and their inhibitors TIMP 2 and signal pathway proteins notch 1, TGF - beta 1, Smad 2, Smad 7 were observed. 4. HE staining and MASSON staining were used to observe the changes of myocardial cell structure and myocardial collagen fibers in different groups of rats on the 14th and 28th days after AMI modeling. 5. Clinical trial: Elisa method was used to determine different types of coronary heart disease. Levels of plasma inflammatory factor Galectin-3 in patients with type I and AF before and after RFCA were measured by Elisa method. Results: 1, 24 hours after AMI, the cardiac function of rats decreased significantly, EF, FS values were lower than the normal control group; 5 days after AMI, the plasma inflammatory factors TNF-a, IL-1 beta increased, and significantly decreased after treatment with atorvastatin or losartan potassium (p0.05); 2, 14 days after AMI, the cardiac function of atorvastatin group or losartan potassium treatment group were significantly lower than that of AMI untreated rats. The results of Q-PCR and/or Western Blot and/or immunohistochemistry showed that the expression of mmp-2, mmp-9, TNF-alpha, IL-1 beta protein in myocardium of rats in atorvastatin group or losartan treatment group decreased, and the expression of TIMP-2 protein increased 14 days after modeling (p0.05). Plasma BNP was elevated, plasma BNP was decreased in atorvastatin group or losartan treatment group (p0.05). After 28 days of AMI modeling, cardiac function in atorvastatin group or losartan treatment group was improved, and hemodynamic indexes such as dp/dt max, dp/dt min were improved significantly (p0.05). And/or immunohistochemical staining showed that atorvastatin or losartan inhibited the expression of collagen Collagen I and Collagen III in rat myocardium (p0.05), inhibited the expression of notch 1, TGF-beta 1, Smad2, and Galectin-3, and increased the expression of Smad7 (p0.05); atorvastatin or losartan inhibited the notch 1-TGF-beta-smad signaling pathway by inhibiting the expression of Smad7 (p0.05). Myocardial inflammation and fibrosis in AMI rats were induced; plasma BNP increased after 28 days of modeling, plasma BNP decreased in atorvastatin group and losartan group (p0.05); 4. After 14 and 28 days of modeling, the structural disorder of myocardial cells in atorvastatin group or losartan group improved, inflammatory cells decreased, and myocardial glue decreased. 5, clinical trials showed that the level of Galectin-3 in plasma of AMI patients was higher than that of UAP patients (p0.05), and the level of Galectin-3 in UAP patients was higher than that of SAP patients (p0.05); the level of Galectin-3 in coronary artery disease group was higher than that of single lesion group (p0.05); the level of Galectin-3 in AF patients converted to sinus rhythm after RFCA was higher than that before operation. The level of Galectin-3 was negatively correlated with the left ventricular ejection fraction (LVEF) in patients with coronary artery disease (r = - 0.405, P 0.05). Conclusion: 1. Rat AMI was established. Inflammation, fibrosis, elevation of inflammatory factors TNF-alpha, IL-1beta, Galectin-3 and fibrosis factors mmp2, mmp9, Collagen I and Collagen III occur in the myocardium after cardiac infarction. Atorvastatin or losartan can inhibit myocardial inflammation and fibrosis through notch1-TGF-beta-smads pathway and reduce inflammation and fibrosis. Atorvastatin or losartan can improve myocardial cell necrosis and structural disorder in AMI rats, and less myocardial collagen fibers range; 3. Clinical trials showed that inflammation and fibrosis factor Gale in plasma of patients with coronary heart disease. The content of ctin-3 was correlated with the severity of myocardial ischemia and injury, with the increase of myocardial ischemia, the content of Galectin-3 increased gradually; Galectin-3 was negatively correlated with LVEF in patients with coronary heart disease; 4, Galectin-3 was a factor of myocardial inflammation and fibrosis; the elevation of Galectin-3 in AF patients was related to atrial fibrosis, and the level of Galectin-3 decreased after RFCA. Atorvastatin decreased the level of Galectin-3 in patients with AMI after PCI, but there was no difference before and after PCI, which may be related to the fewer times of taking drugs.
【學位授予單位】:天津醫(yī)科大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:R542.22
【相似文獻】
相關期刊論文 前10條
1 費曉;趙寧;王鳴;;Smad信號通路在糖尿病腎病的作用[J];中國中西醫(yī)結(jié)合腎病雜志;2009年05期
2 王勤;王建春;李玉英;王關嵩;;甲基-β-環(huán)糊精對肺泡Ⅱ型上皮細胞增殖和TGF-β/Smad信號通路的影響[J];第三軍醫(yī)大學學報;2011年08期
3 陳卓雄;雷閩湘;張軍;;脂質(zhì)與糖尿病大鼠腎小球TGF-β/Smad信號通路的關系[J];中國糖尿病雜志;2007年05期
4 徐麗紅;鄭勇;;肝纖維化中TGF-β/Smad信號通路[J];臨床肝膽病雜志;2006年01期
5 張云龍;姚立;;轉(zhuǎn)化生長因子β-Smad信號通路與肝纖維化[J];中西醫(yī)結(jié)合肝病雜志;2011年06期
6 張梁;黃涵;;轉(zhuǎn)化生長因子β及其受體-Smad信號通路與大腸癌研究進展[J];右江醫(yī)學;2009年05期
7 王清蘭;陶艷艷;沈麗;崔紅燕;劉成海;;扶正化瘀方影響轉(zhuǎn)化生長因子β1/Smad信號通路的抗肝纖維化作用機制[J];中西醫(yī)結(jié)合學報;2012年05期
8 林忠琨;張閏;葛崢;劉娟;郭星;喬純;吳雨潔;仇海榮;張建富;李建勇;;成人T細胞急性淋巴細胞白血病中NOTCH1突變的特征研究[J];中國實驗血液學雜志;2013年06期
9 王曉霞;吳少玲;趙新東;劉相萍;常燦;;Notch1蛋白在淋巴瘤組織的表達及意義[J];齊魯醫(yī)學雜志;2013年01期
10 鄭瑞芝,陳雋;TGF-β/Smad信號通路與糖尿病腎病[J];現(xiàn)代醫(yī)藥衛(wèi)生;2005年08期
相關會議論文 前10條
1 楊曉;;TGF-β/Smad信號通路維持組織穩(wěn)態(tài)的生理功能和機制[A];2012全國發(fā)育生物學大會摘要集[C];2012年
2 張浩;劉伏友;彭佑銘;劉映紅;廖琴;;TGF-β_1介導的Smad信號通路對人腹膜間皮細胞細胞外基質(zhì)的調(diào)控[A];“中華醫(yī)學會腎臟病學分會2004年年會”暨“第二屆全國中青年腎臟病學術會議”論文匯編[C];2004年
3 徐丹;龍庭鳳;柴燕杰;涂穎;顧華;何黎;;日光性角化病、鱗狀細胞癌中TGF-β/Smad信號通路因子及相關因子表達變化的研究[A];中華醫(yī)學會第十八次全國皮膚性病學術年會論文匯編[C];2012年
4 徐丹;袁瑞紅;劉彤云;涂穎;顧華;何黎;;不同強度紫外線對日光性角化病中TGF-β/Smad信號通路及相關因子表達變化影響的研究[A];中華醫(yī)學會第十八次全國皮膚性病學術年會論文匯編[C];2012年
5 張維溪;戴歡;賀孝良;方麗;趙瑞雪;李昌崇;;糖皮質(zhì)激素調(diào)控哮喘大鼠氣道重塑中TGF-β 1/Smad信號通路的研究[A];第六屆江浙滬兒科學術會議暨兒科學基礎與臨床研究進展學術班論文匯編[C];2009年
6 鄧穎;于力;張瑤;郝志宏;;福辛普利對腎小球系膜細胞TGF-β1/Smad信號通路的干預作用[A];中華醫(yī)學會第十五次全國兒科學術大會論文匯編(上冊)[C];2010年
7 鄧穎;于力;溫捷;;TGF-β/Smad信號通路在腎小球系膜細胞的表達及ACEI對其影響[A];中華醫(yī)學會第十七次全國兒科學術大會論文匯編(下冊)[C];2012年
8 陳權;焦安欽;徐俊秀;袁泉;李玲;苗德光;陳則潤;;腎力康顆粒對系膜增生性腎小球腎炎患者TGF-β1與CTGF水平影響的臨床研究[A];第10屆全國中西醫(yī)結(jié)合腎臟病學術會議論文匯編[C];2009年
9 張玉震;孫金龍;李猛;李相坤;王鵬;魏麟;;TGF-β1與慢性交通性腦積水形成機制研究進展[A];中華醫(yī)學會神經(jīng)外科學分會第九次學術會議論文匯編[C];2010年
10 劉佳琦;胡大海;張戰(zhàn)鳳;官浩;折濤;張軍;白曉智;;IFN-γ對瘢痕疙瘩成纖維細胞TGF-β/Smad信號通路作用的研究[A];中華醫(yī)學會燒傷外科學分會2009年學術年會論文匯編[C];2009年
相關重要報紙文章 前10條
1 記者 馮衛(wèi)東;大鼠研究顯示孕期壓力或可代代相傳[N];科技日報;2014年
2 奇 云;解讀大鼠基因有助人類攻克疑難病癥[N];大眾科技報;2004年
3 張?zhí)煨?克隆大鼠意義重大[N];中國醫(yī)藥報;2003年
4 本報特約撰稿人 陸志城;用大鼠還是用小鼠?[N];醫(yī)藥經(jīng)濟報;2004年
5 記者 藍建中;日本研究:骨髓移植使大鼠血管“返老還童”[N];新華每日電訊;2010年
6 記者 姜澎;聰明大鼠 解密大腦記憶功能[N];文匯報;2009年
7 萬姍姍 記者 王春;轉(zhuǎn)基因“聰明大鼠”學得快記得牢[N];科技日報;2009年
8 記者 曹繼軍 顏維琦 通訊員 孫國根;大鼠基因功能圖譜被成功繪制[N];光明日報;2014年
9 記者 白毅 通訊員 孫國根;大鼠基因功能圖譜繪制成功[N];中國醫(yī)藥報;2014年
10 記者 孫國根;將大鼠基因的功能“對號入座”[N];健康報;2014年
相關博士學位論文 前10條
1 康琪;阿托伐他汀對急性心肌梗死大鼠心肌炎癥和纖維化反應相關Notch1與TGF-β-Smad信號通路的作用以及對冠心病患者血漿炎性因子Galectin-3作用[D];天津醫(yī)科大學;2017年
2 牛華濤;Notch1在云南宣威女性肺癌中的表達及作用機制研究[D];昆明醫(yī)科大學;2015年
3 王曰偉;Notch1和TACE在腹主動脈瘤血漿中的變化及意義[D];北京協(xié)和醫(yī)學院;2016年
4 王學謙;人參皂苷Rh2通過下調(diào)Notch1信號通路調(diào)控前列腺癌干細胞生物學行為的實驗研究[D];北京中醫(yī)藥大學;2017年
5 王召靜;HSP90抑制劑在T-ALL中靶向NOTCH1的機制和功能研究及MWCNTs抑制Pgp和MRP4的機制研究[D];華中科技大學;2016年
6 魏瀟凡;Kindlin-2通過促進TGF-β-Smad信號通路加速腎臟纖維化[D];南方醫(yī)科大學;2011年
7 朱曉燕;靶向TGF-βⅡ型受體的適配子殼聚糖緩釋凝膠對大鼠濾過術后結(jié)膜瘢痕的作用研究[D];第三軍醫(yī)大學;2015年
8 姚丙;Elf5抑制TGF-β誘導的前列腺癌上皮間質(zhì)轉(zhuǎn)化的機制研究[D];天津醫(yī)科大學;2015年
9 宋娓;中國漢族男性人群TGF-β1基因多態(tài)性與痛風遺傳易感性的相關性研究[D];青島大學;2016年
10 曹延林;p38 MAPK通路介導TGF-β1/CTGF調(diào)控人黃韌帶肥厚增生的實驗研究[D];南方醫(yī)科大學;2015年
相關碩士學位論文 前10條
1 陳紅兵;RNF111通過調(diào)控TGF-β/Smad信號通路影響非小細胞肺癌轉(zhuǎn)移的表觀機制[D];蘇州大學;2015年
2 李楠;維藥異常黑膽質(zhì)成熟劑對增生性瘢痕增殖與轉(zhuǎn)化生長因子β/Smad信號通路的影響[D];新疆醫(yī)科大學;2015年
3 朱彥;TGF-β-Smad信號通路相關細胞因子在小鼠非酒精性脂肪肝干預中的差異表達[D];湖南師范大學;2016年
4 周玲;紫花牡荊素靶向TGF-β/Smad信號通路減輕肝纖維化的實驗研究[D];南方醫(yī)科大學;2016年
5 陳冰;Smad信號通路調(diào)控BMP9介導的iSCAP成骨/成牙本質(zhì)分化的機制研究[D];重慶醫(yī)科大學;2016年
6 沈毅忱;TLR7對瘢痕疙瘩形成中Smad信號通路的調(diào)控作用研究[D];浙江大學;2016年
7 班桂飛;HtrA1通過TGF-β1/Smad信號通路調(diào)節(jié)人牙髓細胞向成牙本質(zhì)細胞分化的研究[D];廣西醫(yī)科大學;2017年
8 謝園園;褪黑素對肝星狀細胞中TGF-β1/Smad信號通路的影響[D];安徽醫(yī)科大學;2017年
9 魏緒法;泡球蚴感染中期小鼠纖維化肝組織中TGF-β1/Smad信號通路的表達和意義[D];新疆醫(yī)科大學;2011年
10 楊琦;Notch1基因表達對T-ALL細胞增殖及硼替佐米敏感性的影響[D];山西醫(yī)科大學;2015年
,本文編號:2215969
本文鏈接:http://sikaile.net/yixuelunwen/xxg/2215969.html