端粒酶活性變化在動(dòng)脈粥樣硬化斑塊發(fā)生發(fā)展過(guò)程中的作用機(jī)制
[Abstract]:BACKGROUND AND OBJECTIVE Vascular calcification, especially atherosclerotic calcification, is an important factor in cardiovascular and cerebrovascular diseases. Vascular calcification is an active, highly controllable, preventable and reversible biological process initiated by a variety of cells and similar to bone development. Vascular calcification is mainly the calcification of vascular smooth muscle cells (VSMCs). Vascular smooth muscle cells (VSMCs) express a small amount of telomerase. Studies have shown that atherosclerotic plaques. The telomere length of VSMCs was significantly shorter than that of normal VSMCs, and telomerase activity was also significantly lower, but the regulatory mechanism of telomerase activity and its role in vascular calcification were not clear. The expression of related transcription factor 2 (RUNX2) promotes the formation of VSMCs nodules. It is found that heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) can mediate the proteasome hydrolysis by binding to I kappa B alpha, promote the entry of NF-kappa B into the nucleus and activate the inflammatory signaling pathway. hnRNPA1 is the most abundant member of the hnRNPs family. A class of proteins that regulate the expression of target genes by regulating mRNA synthesis processes such as transcription, splicing, stability, and mRNA transport from nucleus to cytoplasm. Transriptase, hTERT) and hnRNPA1 expression were significantly up-regulated. It has been reported that hnRNPA1 can prolong telomere length and prevent premature senescence induced by telomere depletion. Therefore, this study is to clarify whether hnRNPA1 can regulate telomerase activity and I-kappa Balpha/NF-kappa B signaling pathway in vascular smooth muscle cells, thereby affecting vascular smooth muscle fineness. Methods 1. Human umbilical artery smooth muscle cells (HUASMCs) were isolated and cultured, and pcDNA3.1-hnRNP A1 eukaryotic expression vector was constructed and transfected into HUASMCs. The effect of hnRNP A1 on telomerase activity, proliferation and apoptosis of HUASMCs was detected by flow cytometry. 2. Calcification model of HUASMCs was established. The expression of genes related to calcification of HUASMCs was detected by real-time fluorescence quantitative PCR and Western blot. The mechanism of hnRNP A1 in the process of vascular smooth muscle calcification was elucidated. Results 1. HUASMCs cultured in vitro showed that the expression of telomerase and hnRNP A1 were significantly up-regulated during the process of HUASMCs differentiation from contractile to synthetic. Overexpression of hnRNP A1 significantly increased telomerase activity by 2.7 times, but had no significant effect on the proliferation and apoptosis of HUASMCs. 2. Calcification model of HUASMCs was established by overexpression of hnRNP A1. The results showed that hnRNPA1 could promote the formation of calcified nodules in HUASMCs, but the molecular mechanism of hnRNPA1 was not mediated by I-kappa Balpha/NF-kappa B signaling pathway, and the specific mechanism needed to be further clarified. Overexpression of hnRNP A1 significantly up-regulates telomerase activity and promotes calcification of vascular smooth muscle cells during atherosclerosis, but the specific molecular mechanisms need to be further clarified. Macrophage activity in the heart and plaque can cause active inflammation, calcification of fibrous cap smooth muscle cells and lipid accumulation, leading to plaque rupture, sudden death, acute myocardial infarction, unstable angina and ischemic stroke. However, the molecular mechanism of telomerase activation remains unclear. In our previous work, we found that the expression of human telomerase reverse transcriptase (hTERT) in the macrophage-rich region of human carotid atherosclerotic plaques was significantly up-regulated and the inflammation was active. In addition, we also found that monocytes were induced in vitro. In the process of macrophage differentiation, the expression of hTERT is up-regulated, and a special microRNAs (microRNAs) molecule, microRNAs-216a, is up-regulated. It has been suggested that microRNAs-216a may be up-regulated in aging cells, inhibit endothelial autophagy, participate in lipid metabolism of macrophages, and may affect atherosclerotic cardiovascular disease. Our further experimental results suggest that microRNA216a mediates telomerase activation in monocytes and macrophages, promotes macrophage activation and inflammation. The purpose of this study is to explore the molecular mechanism of microRNA216a regulating telomerase activation in macrophages, and to elucidate its effect on macrophage differentiation and function, which is called atherosclerosis. Methods 1. Carotid plaque tissues from patients after carotid endarterectomy were collected for immunohistochemistry and immunofluorescence staining to study the co-localization of monocyte/macrophage and hTERT in carotid plaque. 2. In vitro phorbol-12-myristate-13-acetate (PMA) induced THP1. Monocytes differentiate into macrophages, explore the changes of expression of microRNAs-216a and hTERT, overexpress and inhibit microRNAs-216a, and study the molecular mechanism of microRNAs regulating telomerase activation in monocytes/macrophages; 3. ApoE-/-male mice were used for right carotid artery ligation, high-fat diet, construction of atherosclerosis model, study of microRNAs-21. Results 1. Immunohistochemistry and immunofluorescence staining of human carotid atherosclerotic plaque tissue specimens. The results showed that hTERT was specifically expressed in the macrophage-rich region and telomerase activity in the plaque compared with normal blood vessels. The expression of microRNA-216a and hTERT was significantly increased in THP-1 cells induced to macrophage. Further studies showed that microRNA-216a regulated the telomerase activity of monocytes/macrophages through SMAD3/NF-kappa B signaling pathway. 3. Mice atherosclerosis model showed that microRNA-216a promoted carotid monocytes/macrophages to M1. Conclusion MicroRNA216a can regulate the telomerase activity of monocytes and macrophages through SMAD3/NF-kappa B signaling pathway, promote the transformation of macrophages to M1 and the secretion of inflammatory cytokines, thereby promoting the activation of monocytes and macrophages. The development of atherosclerotic plaque.
【學(xué)位授予單位】:北京協(xié)和醫(yī)學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:R543.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭振群;;關(guān)于巨噬細(xì)胞的幾個(gè)問(wèn)題[J];山西醫(yī)藥雜志;1974年12期
2 ;豚鼠巨噬細(xì)胞經(jīng)P_(204)處理后的抗石英細(xì)胞毒作用[J];國(guó)外醫(yī)學(xué)參考資料(衛(wèi)生學(xué)分冊(cè));1976年04期
3 鄧俠進(jìn);;巨噬細(xì)胞的抗癌作用[J];遵義醫(yī)學(xué)院學(xué)報(bào);1979年02期
4 陸天才;;疾病對(duì)肺巨噬細(xì)胞的影響[J];煤礦醫(yī)學(xué);1982年01期
5 郭瑞清;祝彼得;;一種分離巨噬細(xì)胞的簡(jiǎn)單方法[J];濱州醫(yī)學(xué)院學(xué)報(bào);1990年02期
6 謝志堅(jiān);巨噬細(xì)胞異質(zhì)性[J];醫(yī)學(xué)綜述;2001年06期
7 饒艷;運(yùn)動(dòng)及神經(jīng)內(nèi)分泌對(duì)巨噬細(xì)胞功能的調(diào)節(jié)[J];體育與科學(xué);2002年05期
8 朱金元;;吸煙對(duì)肺巨噬細(xì)胞的影響[J];浙江醫(yī)學(xué)教育;2003年01期
9 張俊峰;過(guò)氧化物酶體增殖物激活受體與單核/巨噬細(xì)胞系[J];醫(yī)學(xué)綜述;2004年03期
10 韋錦學(xué);顧軍;;巨噬細(xì)胞的激活誘導(dǎo)死亡[J];生命科學(xué);2006年02期
相關(guān)會(huì)議論文 前10條
1 史玉玲;王又明;豐美福;;巨噬細(xì)胞激活作用的研究[A];中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)第五次會(huì)議論文摘要匯編[C];1992年
2 吳國(guó)明;周輝;;巨噬細(xì)胞和創(chuàng)傷纖維化[A];2009年浙江省骨科學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2009年
3 李奇;王海杰;;透明質(zhì)酸對(duì)于淋巴結(jié)巨噬細(xì)胞運(yùn)動(dòng)的影響[A];解剖學(xué)雜志——中國(guó)解剖學(xué)會(huì)2002年年會(huì)文摘匯編[C];2002年
4 劉革修;歐大明;劉軍花;黃紅林;廖端芳;;丙丁酚在體外能抑制巨噬細(xì)胞脂質(zhì)氧化介導(dǎo)的低密度脂蛋白氧化并調(diào)節(jié)氧化巨噬細(xì)胞的分泌功能[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(下冊(cè))[C];1999年
5 葉金善;楊麗霞;郭瑞威;;環(huán)氧化酶-2/前列腺素E_2在血管緊張素Ⅱ刺激巨噬細(xì)胞表達(dá)細(xì)胞外基質(zhì)金屬蛋白酶誘導(dǎo)因子中的作用[A];第十三次全國(guó)心血管病學(xué)術(shù)會(huì)議論文集[C];2011年
6 秦帥;陳希;孔德明;;構(gòu)建由綠色熒光標(biāo)記巨噬細(xì)胞的轉(zhuǎn)基因斑馬魚(yú)系[A];貴州省中西醫(yī)結(jié)合內(nèi)分泌代謝學(xué)術(shù)會(huì)論文匯編[C];2012年
7 武劍華;徐惠綿;;腫瘤相關(guān)巨噬細(xì)胞在胃癌中的相關(guān)研究[A];第9屆全國(guó)胃癌學(xué)術(shù)會(huì)議暨第二屆陽(yáng)光長(zhǎng)城腫瘤學(xué)術(shù)會(huì)議論文匯編[C];2014年
8 何軍;;血凝素樣氧化型低密度脂蛋白受體升高巨噬細(xì)胞內(nèi)膽固醇水平[A];中華醫(yī)學(xué)會(huì)第11次心血管病學(xué)術(shù)會(huì)議論文摘要集[C];2009年
9 宋盛;周非凡;邢達(dá);;PDT誘導(dǎo)的凋亡細(xì)胞對(duì)巨噬細(xì)胞NO合成的影響[A];第七屆全國(guó)光生物學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2010年
10 張磊;朱建華;黃元偉;姚航平;;血管緊張素Ⅱ?qū)奘杉?xì)胞(THP-1重細(xì)胞)凝集素樣氧化低密度脂蛋白受體表達(dá)的影響[A];浙江省免疫學(xué)會(huì)第五次學(xué)術(shù)研討會(huì)論文匯編[C];2004年
相關(guān)重要報(bào)紙文章 前10條
1 通訊員 李靜 記者 胡德榮;惡性腫瘤巨噬細(xì)胞未必皆“惡人”[N];健康報(bào);2014年
2 蘭克;以嘗試用巨噬細(xì)胞治癱瘓[N];科技日?qǐng)?bào);2000年
3 薛佳;免疫系統(tǒng)——人體的“衛(wèi)士”[N];保健時(shí)報(bào);2009年
4 記者 胡德榮;鐵泵蛋白“維穩(wěn)”鐵代謝作用首次闡明[N];健康報(bào);2011年
5 侯嘉 何新鄉(xiāng);硒的神奇功能[N];中國(guó)食品質(zhì)量報(bào);2003年
6 唐穎 倪兵 陳代杰;巨噬細(xì)胞泡沫化抑制劑研究快步進(jìn)行[N];中國(guó)醫(yī)藥報(bào);2006年
7 劉元江;新發(fā)現(xiàn)解釋腫瘤為何易成“漏網(wǎng)之魚(yú)”[N];醫(yī)藥經(jīng)濟(jì)報(bào);2007年
8 本報(bào)記者 侯嘉 通訊員 何新鄉(xiāng);今天你補(bǔ)硒了嗎[N];醫(yī)藥經(jīng)濟(jì)報(bào);2003年
9 左志剛;升血小板藥使用注意[N];醫(yī)藥養(yǎng)生保健報(bào);2007年
10 記者 許琦敏;“鐵泵”蛋白幫助回收鐵元素[N];文匯報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 周赤燕;巨噬細(xì)胞MsrA對(duì)動(dòng)脈粥樣硬化的干預(yù)研究[D];武漢大學(xué);2013年
2 章桂忠;TIPE2蛋白調(diào)控細(xì)胞增殖和炎癥的機(jī)制研究[D];山東大學(xué);2015年
3 張瑜;DKK1抑制巨噬細(xì)胞內(nèi)脂質(zhì)沉積及其相關(guān)分子機(jī)制[D];山東大學(xué);2015年
4 孟濤;異丙酚對(duì)心臟收縮功能的抑制作用及其對(duì)巨噬細(xì)胞分泌功能調(diào)節(jié)的機(jī)制研究[D];山東大學(xué);2015年
5 周興;基于酵母微囊構(gòu)建新型口服巨噬細(xì)胞靶向遞送系統(tǒng)的研究[D];第三軍醫(yī)大學(xué);2015年
6 蔣興偉;Tim-3對(duì)巨噬細(xì)胞極化的調(diào)控機(jī)制研究[D];中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院;2015年
7 劉伯玉;清道夫受體A介導(dǎo)小鼠巨噬細(xì)胞吞噬鉤端螺旋體研究[D];上海交通大學(xué);2013年
8 楊紹俊;miRNA-155介導(dǎo)ESAT-6誘導(dǎo)巨噬細(xì)胞凋亡的分子機(jī)制及其在結(jié)核診斷中的作用[D];第三軍醫(yī)大學(xué);2015年
9 翟光耀;單核/巨噬細(xì)胞Ly6C~(low)亞群在心肌梗死后瘢痕形成期的抗炎特性研究[D];北京協(xié)和醫(yī)學(xué)院;2014年
10 韓露;TRB3介導(dǎo)的脂肪組織巨噬細(xì)胞極化與糖尿病冠狀動(dòng)脈病變關(guān)系的研究[D];山東大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 李健;端粒酶活性變化在動(dòng)脈粥樣硬化斑塊發(fā)生發(fā)展過(guò)程中的作用機(jī)制[D];北京協(xié)和醫(yī)學(xué)院;2017年
2 張雪;人參皂甙Rb1調(diào)節(jié)巨噬細(xì)胞極化穩(wěn)定動(dòng)脈粥樣硬化斑塊及其機(jī)制研究[D];青島大學(xué);2017年
3 馬春梅;AP0E~(-/-)小鼠TLR9介導(dǎo)巨噬細(xì)胞極化效應(yīng)對(duì)動(dòng)脈粥樣硬化作用的研究[D];福建醫(yī)科大學(xué);2015年
4 張譯丹;鹽皮質(zhì)激素受體拮抗劑調(diào)控巨噬細(xì)胞表型對(duì)實(shí)驗(yàn)性矽肺的作用[D];河北醫(yī)科大學(xué);2015年
5 盧文冉;HCV core蛋白作用的巨噬細(xì)胞培養(yǎng)上清對(duì)肝細(xì)胞生物學(xué)性狀的影響[D];河北醫(yī)科大學(xué);2015年
6 李文建;載脂蛋白E影響巨噬細(xì)胞因子表達(dá)及分型的機(jī)制研究[D];河北醫(yī)科大學(xué);2015年
7 曹爽;高糖對(duì)巨噬細(xì)胞TLR4信號(hào)轉(zhuǎn)導(dǎo)的調(diào)節(jié)作用[D];河北醫(yī)科大學(xué);2015年
8 寧程程;腫瘤相關(guān)巨噬細(xì)胞在子宮內(nèi)膜癌雌激素敏感性中的作用及機(jī)制研究[D];復(fù)旦大學(xué);2014年
9 高龍;PLD4在腫瘤相關(guān)巨噬細(xì)胞抑制結(jié)腸癌增殖中的作用研究[D];成都醫(yī)學(xué)院;2015年
10 任虹;感染期子宮頸癌U14細(xì)胞荷瘤小鼠抑制巨噬細(xì)胞CCL5分泌的機(jī)制研究[D];河北醫(yī)科大學(xué);2015年
,本文編號(hào):2178631
本文鏈接:http://sikaile.net/yixuelunwen/xxg/2178631.html