端粒酶活性變化在動脈粥樣硬化斑塊發(fā)生發(fā)展過程中的作用機制
[Abstract]:BACKGROUND AND OBJECTIVE Vascular calcification, especially atherosclerotic calcification, is an important factor in cardiovascular and cerebrovascular diseases. Vascular calcification is an active, highly controllable, preventable and reversible biological process initiated by a variety of cells and similar to bone development. Vascular calcification is mainly the calcification of vascular smooth muscle cells (VSMCs). Vascular smooth muscle cells (VSMCs) express a small amount of telomerase. Studies have shown that atherosclerotic plaques. The telomere length of VSMCs was significantly shorter than that of normal VSMCs, and telomerase activity was also significantly lower, but the regulatory mechanism of telomerase activity and its role in vascular calcification were not clear. The expression of related transcription factor 2 (RUNX2) promotes the formation of VSMCs nodules. It is found that heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) can mediate the proteasome hydrolysis by binding to I kappa B alpha, promote the entry of NF-kappa B into the nucleus and activate the inflammatory signaling pathway. hnRNPA1 is the most abundant member of the hnRNPs family. A class of proteins that regulate the expression of target genes by regulating mRNA synthesis processes such as transcription, splicing, stability, and mRNA transport from nucleus to cytoplasm. Transriptase, hTERT) and hnRNPA1 expression were significantly up-regulated. It has been reported that hnRNPA1 can prolong telomere length and prevent premature senescence induced by telomere depletion. Therefore, this study is to clarify whether hnRNPA1 can regulate telomerase activity and I-kappa Balpha/NF-kappa B signaling pathway in vascular smooth muscle cells, thereby affecting vascular smooth muscle fineness. Methods 1. Human umbilical artery smooth muscle cells (HUASMCs) were isolated and cultured, and pcDNA3.1-hnRNP A1 eukaryotic expression vector was constructed and transfected into HUASMCs. The effect of hnRNP A1 on telomerase activity, proliferation and apoptosis of HUASMCs was detected by flow cytometry. 2. Calcification model of HUASMCs was established. The expression of genes related to calcification of HUASMCs was detected by real-time fluorescence quantitative PCR and Western blot. The mechanism of hnRNP A1 in the process of vascular smooth muscle calcification was elucidated. Results 1. HUASMCs cultured in vitro showed that the expression of telomerase and hnRNP A1 were significantly up-regulated during the process of HUASMCs differentiation from contractile to synthetic. Overexpression of hnRNP A1 significantly increased telomerase activity by 2.7 times, but had no significant effect on the proliferation and apoptosis of HUASMCs. 2. Calcification model of HUASMCs was established by overexpression of hnRNP A1. The results showed that hnRNPA1 could promote the formation of calcified nodules in HUASMCs, but the molecular mechanism of hnRNPA1 was not mediated by I-kappa Balpha/NF-kappa B signaling pathway, and the specific mechanism needed to be further clarified. Overexpression of hnRNP A1 significantly up-regulates telomerase activity and promotes calcification of vascular smooth muscle cells during atherosclerosis, but the specific molecular mechanisms need to be further clarified. Macrophage activity in the heart and plaque can cause active inflammation, calcification of fibrous cap smooth muscle cells and lipid accumulation, leading to plaque rupture, sudden death, acute myocardial infarction, unstable angina and ischemic stroke. However, the molecular mechanism of telomerase activation remains unclear. In our previous work, we found that the expression of human telomerase reverse transcriptase (hTERT) in the macrophage-rich region of human carotid atherosclerotic plaques was significantly up-regulated and the inflammation was active. In addition, we also found that monocytes were induced in vitro. In the process of macrophage differentiation, the expression of hTERT is up-regulated, and a special microRNAs (microRNAs) molecule, microRNAs-216a, is up-regulated. It has been suggested that microRNAs-216a may be up-regulated in aging cells, inhibit endothelial autophagy, participate in lipid metabolism of macrophages, and may affect atherosclerotic cardiovascular disease. Our further experimental results suggest that microRNA216a mediates telomerase activation in monocytes and macrophages, promotes macrophage activation and inflammation. The purpose of this study is to explore the molecular mechanism of microRNA216a regulating telomerase activation in macrophages, and to elucidate its effect on macrophage differentiation and function, which is called atherosclerosis. Methods 1. Carotid plaque tissues from patients after carotid endarterectomy were collected for immunohistochemistry and immunofluorescence staining to study the co-localization of monocyte/macrophage and hTERT in carotid plaque. 2. In vitro phorbol-12-myristate-13-acetate (PMA) induced THP1. Monocytes differentiate into macrophages, explore the changes of expression of microRNAs-216a and hTERT, overexpress and inhibit microRNAs-216a, and study the molecular mechanism of microRNAs regulating telomerase activation in monocytes/macrophages; 3. ApoE-/-male mice were used for right carotid artery ligation, high-fat diet, construction of atherosclerosis model, study of microRNAs-21. Results 1. Immunohistochemistry and immunofluorescence staining of human carotid atherosclerotic plaque tissue specimens. The results showed that hTERT was specifically expressed in the macrophage-rich region and telomerase activity in the plaque compared with normal blood vessels. The expression of microRNA-216a and hTERT was significantly increased in THP-1 cells induced to macrophage. Further studies showed that microRNA-216a regulated the telomerase activity of monocytes/macrophages through SMAD3/NF-kappa B signaling pathway. 3. Mice atherosclerosis model showed that microRNA-216a promoted carotid monocytes/macrophages to M1. Conclusion MicroRNA216a can regulate the telomerase activity of monocytes and macrophages through SMAD3/NF-kappa B signaling pathway, promote the transformation of macrophages to M1 and the secretion of inflammatory cytokines, thereby promoting the activation of monocytes and macrophages. The development of atherosclerotic plaque.
【學位授予單位】:北京協(xié)和醫(yī)學院
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R543.5
【相似文獻】
相關期刊論文 前10條
1 鄭振群;;關于巨噬細胞的幾個問題[J];山西醫(yī)藥雜志;1974年12期
2 ;豚鼠巨噬細胞經P_(204)處理后的抗石英細胞毒作用[J];國外醫(yī)學參考資料(衛(wèi)生學分冊);1976年04期
3 鄧俠進;;巨噬細胞的抗癌作用[J];遵義醫(yī)學院學報;1979年02期
4 陸天才;;疾病對肺巨噬細胞的影響[J];煤礦醫(yī)學;1982年01期
5 郭瑞清;祝彼得;;一種分離巨噬細胞的簡單方法[J];濱州醫(yī)學院學報;1990年02期
6 謝志堅;巨噬細胞異質性[J];醫(yī)學綜述;2001年06期
7 饒艷;運動及神經內分泌對巨噬細胞功能的調節(jié)[J];體育與科學;2002年05期
8 朱金元;;吸煙對肺巨噬細胞的影響[J];浙江醫(yī)學教育;2003年01期
9 張俊峰;過氧化物酶體增殖物激活受體與單核/巨噬細胞系[J];醫(yī)學綜述;2004年03期
10 韋錦學;顧軍;;巨噬細胞的激活誘導死亡[J];生命科學;2006年02期
相關會議論文 前10條
1 史玉玲;王又明;豐美福;;巨噬細胞激活作用的研究[A];中國細胞生物學學會第五次會議論文摘要匯編[C];1992年
2 吳國明;周輝;;巨噬細胞和創(chuàng)傷纖維化[A];2009年浙江省骨科學學術年會論文匯編[C];2009年
3 李奇;王海杰;;透明質酸對于淋巴結巨噬細胞運動的影響[A];解剖學雜志——中國解剖學會2002年年會文摘匯編[C];2002年
4 劉革修;歐大明;劉軍花;黃紅林;廖端芳;;丙丁酚在體外能抑制巨噬細胞脂質氧化介導的低密度脂蛋白氧化并調節(jié)氧化巨噬細胞的分泌功能[A];面向21世紀的科技進步與社會經濟發(fā)展(下冊)[C];1999年
5 葉金善;楊麗霞;郭瑞威;;環(huán)氧化酶-2/前列腺素E_2在血管緊張素Ⅱ刺激巨噬細胞表達細胞外基質金屬蛋白酶誘導因子中的作用[A];第十三次全國心血管病學術會議論文集[C];2011年
6 秦帥;陳希;孔德明;;構建由綠色熒光標記巨噬細胞的轉基因斑馬魚系[A];貴州省中西醫(yī)結合內分泌代謝學術會論文匯編[C];2012年
7 武劍華;徐惠綿;;腫瘤相關巨噬細胞在胃癌中的相關研究[A];第9屆全國胃癌學術會議暨第二屆陽光長城腫瘤學術會議論文匯編[C];2014年
8 何軍;;血凝素樣氧化型低密度脂蛋白受體升高巨噬細胞內膽固醇水平[A];中華醫(yī)學會第11次心血管病學術會議論文摘要集[C];2009年
9 宋盛;周非凡;邢達;;PDT誘導的凋亡細胞對巨噬細胞NO合成的影響[A];第七屆全國光生物學學術會議論文摘要集[C];2010年
10 張磊;朱建華;黃元偉;姚航平;;血管緊張素Ⅱ對巨噬細胞(THP-1重細胞)凝集素樣氧化低密度脂蛋白受體表達的影響[A];浙江省免疫學會第五次學術研討會論文匯編[C];2004年
相關重要報紙文章 前10條
1 通訊員 李靜 記者 胡德榮;惡性腫瘤巨噬細胞未必皆“惡人”[N];健康報;2014年
2 蘭克;以嘗試用巨噬細胞治癱瘓[N];科技日報;2000年
3 薛佳;免疫系統(tǒng)——人體的“衛(wèi)士”[N];保健時報;2009年
4 記者 胡德榮;鐵泵蛋白“維穩(wěn)”鐵代謝作用首次闡明[N];健康報;2011年
5 侯嘉 何新鄉(xiāng);硒的神奇功能[N];中國食品質量報;2003年
6 唐穎 倪兵 陳代杰;巨噬細胞泡沫化抑制劑研究快步進行[N];中國醫(yī)藥報;2006年
7 劉元江;新發(fā)現(xiàn)解釋腫瘤為何易成“漏網之魚”[N];醫(yī)藥經濟報;2007年
8 本報記者 侯嘉 通訊員 何新鄉(xiāng);今天你補硒了嗎[N];醫(yī)藥經濟報;2003年
9 左志剛;升血小板藥使用注意[N];醫(yī)藥養(yǎng)生保健報;2007年
10 記者 許琦敏;“鐵泵”蛋白幫助回收鐵元素[N];文匯報;2011年
相關博士學位論文 前10條
1 周赤燕;巨噬細胞MsrA對動脈粥樣硬化的干預研究[D];武漢大學;2013年
2 章桂忠;TIPE2蛋白調控細胞增殖和炎癥的機制研究[D];山東大學;2015年
3 張瑜;DKK1抑制巨噬細胞內脂質沉積及其相關分子機制[D];山東大學;2015年
4 孟濤;異丙酚對心臟收縮功能的抑制作用及其對巨噬細胞分泌功能調節(jié)的機制研究[D];山東大學;2015年
5 周興;基于酵母微囊構建新型口服巨噬細胞靶向遞送系統(tǒng)的研究[D];第三軍醫(yī)大學;2015年
6 蔣興偉;Tim-3對巨噬細胞極化的調控機制研究[D];中國人民解放軍軍事醫(yī)學科學院;2015年
7 劉伯玉;清道夫受體A介導小鼠巨噬細胞吞噬鉤端螺旋體研究[D];上海交通大學;2013年
8 楊紹俊;miRNA-155介導ESAT-6誘導巨噬細胞凋亡的分子機制及其在結核診斷中的作用[D];第三軍醫(yī)大學;2015年
9 翟光耀;單核/巨噬細胞Ly6C~(low)亞群在心肌梗死后瘢痕形成期的抗炎特性研究[D];北京協(xié)和醫(yī)學院;2014年
10 韓露;TRB3介導的脂肪組織巨噬細胞極化與糖尿病冠狀動脈病變關系的研究[D];山東大學;2015年
相關碩士學位論文 前10條
1 李健;端粒酶活性變化在動脈粥樣硬化斑塊發(fā)生發(fā)展過程中的作用機制[D];北京協(xié)和醫(yī)學院;2017年
2 張雪;人參皂甙Rb1調節(jié)巨噬細胞極化穩(wěn)定動脈粥樣硬化斑塊及其機制研究[D];青島大學;2017年
3 馬春梅;AP0E~(-/-)小鼠TLR9介導巨噬細胞極化效應對動脈粥樣硬化作用的研究[D];福建醫(yī)科大學;2015年
4 張譯丹;鹽皮質激素受體拮抗劑調控巨噬細胞表型對實驗性矽肺的作用[D];河北醫(yī)科大學;2015年
5 盧文冉;HCV core蛋白作用的巨噬細胞培養(yǎng)上清對肝細胞生物學性狀的影響[D];河北醫(yī)科大學;2015年
6 李文建;載脂蛋白E影響巨噬細胞因子表達及分型的機制研究[D];河北醫(yī)科大學;2015年
7 曹爽;高糖對巨噬細胞TLR4信號轉導的調節(jié)作用[D];河北醫(yī)科大學;2015年
8 寧程程;腫瘤相關巨噬細胞在子宮內膜癌雌激素敏感性中的作用及機制研究[D];復旦大學;2014年
9 高龍;PLD4在腫瘤相關巨噬細胞抑制結腸癌增殖中的作用研究[D];成都醫(yī)學院;2015年
10 任虹;感染期子宮頸癌U14細胞荷瘤小鼠抑制巨噬細胞CCL5分泌的機制研究[D];河北醫(yī)科大學;2015年
,本文編號:2178631
本文鏈接:http://sikaile.net/yixuelunwen/xxg/2178631.html