經(jīng)皮冠狀動脈介入手術術中導航方法研究
[Abstract]:At present, the prevalence and mortality rate of cardiovascular disease is increasing year by year. Percutaneous coronary intervention is a universal treatment for cardiovascular disease. This method has advantages of less trauma, shorter operation time and higher safety. Intraoperative navigation based on X-ray images is an important component of coronary intervention. At present, the master-slave vascular interventional robot is used to deliver the surgical instruments to reduce the radiation to doctors. However, non-real-time and low-accuracy visual feedback greatly restricted the clinical application of minimally invasive interventional robot. In this paper, based on the clinical requirement, the research of intraoperative navigation based on X-ray images is carried out on the platform of coronary intervention robot developed in laboratory, which provides real-time and accurate visual feedback for the robot. In order to effectively reduce the risk of surgery, improve the accuracy of surgery. Combined with the project of National Natural Science Foundation of China, "instrument tracking and control method in robot-assisted vascular interventional surgery", the main research work in this paper includes: X ray image processing in navigation during coronary artery interventional surgery. Based on X-ray image, the relevant algorithms of interventional instrument detection and vascular contour detection are studied. The specific research contents and contributions include: firstly, aiming at the problems of low accuracy and non-real-time in the traditional visual feedback guided wire detection, this paper uses cascaded Ada Boost classifier based on LBP features to detect the guide wire. The algorithm realizes the automatic detection of guide wire, and effectively improves the timeliness of visual feedback. Due to the interference of bone contour similar to guide wire in X-ray image, the detection accuracy of this method is low, which can not meet the needs of clinical. In order to solve the problem of low accuracy of guide wire detection in machine learning, the method based on depth learning is used to detect guide wire in this paper. The algorithm has achieved satisfactory results in real-time and accuracy of wire guide detection. Vascular contour detection is another important link in intraoperative navigation. In this paper, a multi-scale image enhancement algorithm is used to enhance X-ray image. Based on the enhanced image, the classical image cutting method is used to detect the blood vessel contour. Multi-scale enhancement algorithm effectively improves the accuracy of vascular contour detection. In this paper, the image processing of X ray image and the detection of guiding wire and vascular contour in surgical instruments are carried out to obtain the position information and to provide the doctors with real-time and accurate visual feedback information.
【學位授予單位】:哈爾濱理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R541.4;TP18
【相似文獻】
相關期刊論文 前10條
1 周輝;何家駒;楊媛;向征;謝斕;李紹林;周壽軍;;一種分割冠狀動脈X射線造影圖像的有效方法[J];生物醫(yī)學工程與臨床;2013年04期
2 徐智,郁道銀,謝洪波,陳曉冬,黃家祥;造影圖像中的心血管邊緣提取[J];天津大學學報;2003年03期
3 胡春紅;郁道銀;孫正;陳曉冬;;基于造影圖像的冠脈樹中感興趣血管段最佳視角的研究[J];中國生物醫(yī)學工程學報;2007年02期
4 孫正,郁道銀,黃家祥,徐智;基于X射線造影圖像的冠狀動脈運動分析[J];生物醫(yī)學工程學雜志;2005年04期
5 馮瑤;劉寧;馮亞崇;;一種針對造影圖像中血管狹窄的自動識別技術[J];生物醫(yī)學工程學雜志;2013年02期
6 梅川;吳桂良;楊媛;謝斕;何家駒;李紹林;周壽軍;;一種基于區(qū)域增長和結構識別的心血管X線造影圖像分割方法[J];生物醫(yī)學工程學雜志;2014年02期
7 ;北京市醫(yī)學影像X線檢查及造影圖像資料共享指南(2011年版)[J];中國醫(yī)療設備;2014年01期
8 許燕;薛輝;胡廣書;;基于X-ray造影圖像的主要冠狀動脈血管直徑測量的研究[J];中國生物醫(yī)學工程學報;2007年06期
9 顧蘇濱,趙鳳珍,張淑潔;間接門靜脈DSA造影圖像的質(zhì)控措施[J];內(nèi)蒙古醫(yī)學雜志;2004年10期
10 ;北京市醫(yī)學影像X線檢查及造影圖像資料共享指南(2011年版)[J];中國醫(yī)療設備;2014年02期
相關會議論文 前2條
1 李麗;劉越;王涌天;周壽軍;;冠脈造影圖像血管增強新方法研究[A];2006中國科協(xié)年會——數(shù)字成像技術及影像材料科學學術交流會論文集[C];2006年
2 李麗;劉越;王涌天;周壽軍;;冠脈造影圖像血管增強新方法研究[A];提高全民科學素質(zhì)、建設創(chuàng)新型國家——2006中國科協(xié)年會論文集(下冊)[C];2006年
相關博士學位論文 前2條
1 肖若秀;造影圖像的冠脈結構識別與匹配方法研究[D];北京理工大學;2014年
2 黃家祥;基于造影圖像的冠狀動脈三維重建和定量分析方法的研究[D];天津大學;2004年
相關碩士學位論文 前2條
1 王莉;經(jīng)皮冠狀動脈介入手術術中導航方法研究[D];哈爾濱理工大學;2017年
2 邵欣;基于EMD和模極大值的造影圖像血管提取[D];大連海事大學;2014年
,本文編號:2145284
本文鏈接:http://sikaile.net/yixuelunwen/xxg/2145284.html