天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 醫(yī)學(xué)論文 > 外科論文 >

三維有限元分析比較三種內(nèi)固定物對骨盆后環(huán)損傷的治療效果

發(fā)布時(shí)間:2018-09-11 08:57
【摘要】:骨盆骨折是臨床中較為嚴(yán)重的骨折類型,多由交通車禍傷、高處墜落傷等高能量損傷所致。張英澤等對骨折的臨床創(chuàng)傷流行病學(xué)研究中發(fā)現(xiàn),骨盆骨折的發(fā)病率在全身骨折發(fā)病率中約占4.21%,且主要為中青年患者。其中不穩(wěn)定性骨盆骨折占68.3%,常合并周圍血管、神經(jīng)及膀胱、直腸、子宮等重要臟器的損傷,致殘率及致死率高。隨著近十年內(nèi)固定技術(shù)的發(fā)展,內(nèi)固定復(fù)位治療骨盆骨折成為了最常用的治療手段。但內(nèi)固定的選擇多種多樣,每種內(nèi)固定方式的優(yōu)缺點(diǎn)和手術(shù)適應(yīng)癥各不相同,因此選擇合適的內(nèi)固定方式仍是骨科醫(yī)師面臨的重點(diǎn)和難點(diǎn)。與此同時(shí),骨盆是軀體與下肢的力學(xué)轉(zhuǎn)換中心。因此,骨盆創(chuàng)傷手術(shù)治療的首要目的是恢復(fù)骨盆生物力學(xué)功能。一般來說,內(nèi)固定物的臨床療效和生物力學(xué)特性應(yīng)該通過體外生物力學(xué)實(shí)驗(yàn)進(jìn)行驗(yàn)證。然而尸體骨盆標(biāo)本不易獲得,難以收集或制作足夠多的標(biāo)本,易因樣本量不足導(dǎo)致力學(xué)實(shí)驗(yàn)結(jié)果產(chǎn)生較大誤差。同時(shí),實(shí)體生物力學(xué)實(shí)驗(yàn)無法測量骨骼內(nèi)部力學(xué)特性,這些都對骨盆生物力學(xué)研究帶來了一定的局限性。隨著計(jì)算機(jī)技術(shù)和數(shù)字化醫(yī)學(xué)的發(fā)展,有限元分析在生物力學(xué)方面已得到越來越廣泛的應(yīng)用。有限元分析法通過化整為零、集零為整的基本思想,利用多形態(tài)網(wǎng)格來分割各個(gè)復(fù)雜研究區(qū)域,并根據(jù)需要布置所需節(jié)點(diǎn),對骨盆這類復(fù)雜物體結(jié)構(gòu)具有很好的適用性;同時(shí)有限元方法能夠了解模型各部位受力時(shí)的內(nèi)部應(yīng)力和應(yīng)變改變。這些使有限元分析在生物力學(xué)研究方面具有無法比擬的優(yōu)勢,使其成為人類骨盆生物力學(xué)研究最常用的手段。目前臨床上常用的治療骶骨縱行骨折、骶髂關(guān)節(jié)脫位等內(nèi)固定技術(shù)主要有骶髂螺釘(iliosacral screw,ISS)、張力帶接骨板(tension band plate,TBP)和骶髂棒等。這些內(nèi)固定器械都有一定的局限性,如ISS技術(shù)進(jìn)行內(nèi)固定復(fù)位技術(shù)需要醫(yī)生具有較高的手術(shù)技巧,螺釘和導(dǎo)針的置入均需在透視的引導(dǎo)進(jìn)行,可能使醫(yī)生和患者X線暴露時(shí)間增加;TBP在固定前需預(yù)彎鋼板,而重復(fù)預(yù)彎鋼板會降低鋼板強(qiáng)度甚至造成釘孔損傷。此外,TBP術(shù)后感染率較高。針對上述問題,張英澤教授及其課題組根據(jù)骨盆后環(huán)的解剖形態(tài)設(shè)計(jì)了微創(chuàng)可調(diào)式接骨板(minimally invasive adjustable plate,MIAP),可微創(chuàng)植入并通過調(diào)節(jié)螺桿長度以復(fù)位骨盆后環(huán)骨折。本研究通過建立高度仿真的有限元模型,模擬骨盆骨折或脫位,從以下幾個(gè)部分比較了三種內(nèi)固定物對于骨盆生物力學(xué)功能的恢復(fù)效果、骨折固定的穩(wěn)定性以及內(nèi)固定物的生物力學(xué)相容性。第一部分有限元分析不同邊界條件對骨盆生物力學(xué)載荷傳遞的影響目的:建立包括髂骨、骶骨、近端股骨和主要韌帶在內(nèi)的完整骨盆有限元模型。隨后通過應(yīng)變片測量不同載荷下骨盆標(biāo)本表面的應(yīng)變值以驗(yàn)證有限元模型。最終利用驗(yàn)證成功的有限元模型分析不同邊界條件和髖關(guān)節(jié)接觸條件對骨力學(xué)載荷傳遞的影響。方法:取1具成年女性非骨質(zhì)疏松性完整骨盆及近側(cè)l/3股骨標(biāo)本。模擬雙足站立骨盆中立位,將標(biāo)本固定于BOSE生物力學(xué)試驗(yàn)機(jī)。于骶1椎體、骶1椎體近骶髂關(guān)節(jié)的部位、骶2椎體、骶2椎體近骶髂關(guān)節(jié)的部位、髂恥線中點(diǎn)和臨近坐骨大切跡粘貼電阻應(yīng)變片,應(yīng)用WS3811型數(shù)字應(yīng)變儀記錄標(biāo)本在100~500N時(shí)(間隔為100N)垂直載荷下選定位點(diǎn)的應(yīng)變值。隨后選取成年健康女性1名,經(jīng)CT掃描,層厚0.3mm,影像資料以醫(yī)學(xué)數(shù)字成像和交互(Digital Imaging and Communications in Medicine,DICOM)格式保存。應(yīng)用Mimics、Geomagic Studio、Solid Works、Abaqus等軟件建立完整骨盆的三維有限元模型。根據(jù)三種不同髖關(guān)節(jié)接觸條件和邊界條件分別建立模型I、模型II和模型III。模型I在股骨頭和髖臼上建立接觸面,并將其設(shè)為“Contact Condition”,以研究將髖關(guān)節(jié)設(shè)為滑動關(guān)節(jié)對于應(yīng)力分布的影響。模型II將雙側(cè)髖關(guān)節(jié)設(shè)定為綁定連接。模型III的髖關(guān)節(jié)處不包含股骨。模型I和模型II約束股骨末端,模型III約束兩側(cè)的髖臼運(yùn)動中心。向骶骨表面垂直加載100~500N載荷,計(jì)算骨盆的應(yīng)力分布情況。為了更精確的研究不同邊界條件下骨盆載荷傳遞,我們除比較了驗(yàn)證試驗(yàn)中的6個(gè)位點(diǎn)外,檢測了另外3個(gè)骨盆表面的解剖學(xué)位點(diǎn)的應(yīng)力:髖臼臼頂、髖臼后壁和骨盆前部靠近恥骨聯(lián)合的位點(diǎn)。結(jié)果:我們應(yīng)用線性回歸分析對骨盆標(biāo)本和骨盆有限元模型的每個(gè)對應(yīng)點(diǎn)的應(yīng)變值進(jìn)行了比較來驗(yàn)證有限元模型的有效性;貧w方程和相關(guān)系數(shù)分別是:y=1.019x-1.114,R2=0.97。同時(shí),隨著載荷水平增加,線性回歸的相關(guān)系數(shù)從100N時(shí)的R2=0.90升高至500N時(shí)的R2=0.98,說明高載荷比低載荷的線性回歸性更好。此外,我們發(fā)現(xiàn)回歸方程的理論斜率隨加載力的升高而更加趨近于1,說明加載越高,有限元分析與生物力學(xué)實(shí)驗(yàn)結(jié)果越接近。關(guān)于載荷傳遞,三個(gè)模型的應(yīng)力分布均沿著髂恥線傳遞,每個(gè)模型的最大應(yīng)力均位于骶髂骨間韌帶。比較三個(gè)模型應(yīng)力值,在恥骨聯(lián)合附近的位點(diǎn),模型III分別比模型I和II分別下降了39.1%和48.52%。此外,模型II和III在髖臼臼頂區(qū)域的應(yīng)力值比模型I分別減少了390.53%和103.61%。同時(shí),模型II髖臼后壁的應(yīng)力值比模型I和III分別分別高出了197.15%和305.17%。結(jié)論:包含有完整骨結(jié)構(gòu)和主要韌帶的骨盆三維有限元模型可以很好的模擬出正常的骨盆生物力學(xué)特性。同時(shí),髖關(guān)節(jié)處的邊界條件、接觸條件和骨盆近端股骨解剖結(jié)構(gòu)對生物力學(xué)預(yù)測結(jié)果具有很大影響。第二部分三種內(nèi)固定治療骶骨骨折的穩(wěn)定性和生物力學(xué)相容性目的:通過有限元分析模擬雙足站立位、前屈和側(cè)彎姿態(tài),分別比較2枚ISS、TBP和MIAP治療垂直不穩(wěn)定型骨盆骨折后骨盆生物力學(xué)功能的恢復(fù)、骨折固定的穩(wěn)定性以及內(nèi)固定物的生物力學(xué)相容性。方法:根據(jù)之前的實(shí)驗(yàn)數(shù)據(jù)建立完整的骨盆有限元模型,分別置入三種不同的內(nèi)固定器械。隨后對骶骨施加500N垂直載荷、500N垂直載荷加10Nm前向扭矩和500N垂直載荷加10Nm右向扭矩,以分別模擬雙足站立姿態(tài)、前屈姿態(tài)和側(cè)彎姿態(tài)。為了研究不同內(nèi)固定下骨盆載荷的傳遞,我們設(shè)置了6個(gè)測量點(diǎn),用以測量骨盆的應(yīng)力傳遞,分別為:骶1椎體中點(diǎn);骶1椎體水平骶髂關(guān)節(jié)處;骶2椎體骶髂關(guān)節(jié)處;髂恥線中點(diǎn);髖臼臼頂和恥骨聯(lián)合旁。同時(shí),測量在不同姿態(tài)下骨盆模型中骶骨和內(nèi)固定物的最大位移值、應(yīng)力值及骶骨骨折斷端的應(yīng)力值,并進(jìn)行比較。結(jié)果:三種內(nèi)固定物都可以有效的恢復(fù)受損骨盆的生物力學(xué)傳遞功能。但是MIAP降低了在骶2椎體水平骶髂關(guān)節(jié)區(qū)域的應(yīng)力集中。同時(shí),不同運(yùn)動狀態(tài)對應(yīng)力分布無明顯影響。在站立狀態(tài)下,TBP模型內(nèi)固定物的最大應(yīng)力分別比ISS和MIAP模型高出了167.47%和53.41%;TBP模型應(yīng)力遮蔽現(xiàn)象分別比ISS和MIAP模型高出343.42%和68.2%;TBP固定方式的受損骶骨的垂直位移僅比ISS和MIAP模型分別高出了5.83%和9.48%;MIAP模型受損骶骨的最大應(yīng)力值與ISS和TBP模型相比分別降低了15.84%和8.84%;同時(shí),結(jié)果顯示TBP模型的骨折表面應(yīng)力明顯高于MIAP和ISS模型,在骶2和骶3椎體尤為明顯。側(cè)彎和前屈狀態(tài)下,各結(jié)果的趨勢與站立狀態(tài)相同。結(jié)論:這三種內(nèi)固定物的生物力學(xué)穩(wěn)定性無顯著差異;然而,ISS和MIAP內(nèi)固定方式的疲勞斷裂、螺釘松動風(fēng)險(xiǎn)以及應(yīng)力遮蔽現(xiàn)象均低于TBP內(nèi)固定方式。同時(shí),MIAP和ISS固定相比于TBP固定,減少了骶骨上的應(yīng)力集中,更有助于愈合過程,尤其是在骶2和骶3椎體骨折斷端。第三部分三種內(nèi)固定治療骶髂關(guān)節(jié)脫位的穩(wěn)定性和生物力學(xué)相容性目的:通過有限元分析模擬雙足站立位,分別比較2枚ISS、TBP和MIAP配合重建鋼板治療單側(cè)骶髂關(guān)節(jié)脫位合并恥骨聯(lián)合分離骨盆后骨盆生物力學(xué)功能的恢復(fù)、骨折固定的穩(wěn)定性以及內(nèi)固定物的生物力學(xué)相容性。方法:根據(jù)之前實(shí)驗(yàn)數(shù)據(jù)建立完整的骨盆有限元模型,隨后將三個(gè)有限元模型中左半骨盆的所有支持韌帶和恥骨聯(lián)合韌帶去除,以獲得垂直和旋轉(zhuǎn)不穩(wěn)定模型。分別模擬置入三種不同的內(nèi)固定器械,隨后對骶骨施加500N垂直載荷以模擬雙足站立姿態(tài)。為了研究不同內(nèi)固定下骨盆的載荷傳遞,我們設(shè)置了6個(gè)測量點(diǎn)用以測量骨盆的應(yīng)力傳遞,分別為:骶1椎體中點(diǎn);骶1椎體水平骶髂關(guān)節(jié)處;骶2椎體骶髂關(guān)節(jié)處;髂恥線中點(diǎn);髖臼臼頂和恥骨聯(lián)合旁。同時(shí),測量骨盆模型中骶骨和內(nèi)固定物的最大位移值、應(yīng)力值及骨盆前環(huán)重建鋼板的應(yīng)力值,并進(jìn)行比較。結(jié)果:應(yīng)力云圖顯示,ISS、TBP和MIAP模型可以有效恢復(fù)受損骨盆的生物力學(xué)傳遞功能。對6個(gè)應(yīng)力測量位點(diǎn)進(jìn)行分析后,發(fā)現(xiàn)MIAP降低了在骶2椎體水平骶髂關(guān)節(jié)區(qū)域的應(yīng)力集中。在ISS、TBP和MIAP模型中,最大Von Mises應(yīng)力都集中于骨盆后環(huán)內(nèi)固定物的螺釘上,并且ISS模型中骨盆后環(huán)內(nèi)固定物的Von Mises應(yīng)力最大值比在TBP模型和MIAP模型中分別高出了13.6%和21.12%。骨盆后環(huán)內(nèi)固定物與骶骨間的Von Mises應(yīng)力差異值越大代表應(yīng)力遮蔽現(xiàn)象越明顯,ISS模型中的應(yīng)力差值分別比TBP模型和MIAP模型中高出了7.91%和14.72%。MIAP內(nèi)固定物的最大垂直位移僅比ISS模型和TBP模型分別高出4.46%和1.74%。ISS固定方式中受損骶骨的最大垂直位移僅比TBP和MIAP模型分別高出了0.85%和6.25%。ISS模型中骶骨的Von Mises應(yīng)力最大值比在TBP模型和MIAP模型中分別高出了26.11%和35.35%。同時(shí),TBP和MIAP模型中受損骶骨的Von Mises應(yīng)力最大值均位于骶髂關(guān)節(jié)下部,而ISS模型的則位于螺釘與第2骶椎棘突相連接處。我們比較了三種內(nèi)固定物對于骨盆前屈穩(wěn)定性的恢復(fù),TBP模型組的前屈角度比ISS組與MIAP組分別提高了288.18%和256.56%。結(jié)論:這三種內(nèi)固定的生物力學(xué)穩(wěn)定性以及應(yīng)力遮蔽現(xiàn)象均無顯著差異。然而,TBP和MIAP內(nèi)固定方式的疲勞斷裂和螺釘松動風(fēng)險(xiǎn)低于ISS內(nèi)固定方式。此外,ISS和MIAP固定方式對于前屈旋轉(zhuǎn)的穩(wěn)定性比TBP固定方式具有明顯的優(yōu)越性。
[Abstract]:Pelvic fracture is a serious type of fracture in clinic, which is mostly caused by high-energy injuries such as traffic accidents and high-altitude falling injuries. With the development of internal fixation technology in recent ten years, internal fixation and reduction has become the most commonly used treatment for pelvic fractures. However, the choice of internal fixation varies, the advantages and disadvantages of each internal fixation method and the surgical adaptation. In general, the clinical efficacy and biomechanical properties of the internal fixator should be considered. However, cadaver pelvic specimens are difficult to obtain, collect or make enough specimens, which may lead to large errors in mechanical experimental results due to insufficient sample size. At the same time, solid biomechanical experiments can not measure the internal mechanical properties of bones, which bring about pelvic biomechanical research. With the development of computer technology and digital medicine, finite element analysis has been used more and more widely in biomechanics. Finite element analysis (FEA) divides various complex research areas by means of the basic idea of turning the whole into zero and integrating the zero into the whole. At the same time, the finite element method can understand the internal stress and strain changes of each part of the model. These make the finite element analysis have incomparable advantages in biomechanical research, making it the most commonly used means of human pelvic biomechanical research. The commonly used internal fixation techniques for the treatment of sacroiliac fracture and dislocation include iliosacral screw (ISS), tension band plate (TBP) and sacroiliac rod. Screw and guide needle placement should be guided by fluoroscopy, which may increase X-ray exposure time of doctors and patients. TBP should be pre-bent before fixation, and repeated pre-bent plates can reduce the strength of the plate and even cause nail hole damage. In addition, the infection rate after TBP is high. To solve these problems, Professor Zhang Yingze and his team based on the posterior pelvic ring. A minimally invasive adjustable plate (MIAP) was designed for minimally invasive pelvic fracture reduction by adjusting the screw length. The first part is the finite element analysis of the effects of different boundary conditions on the biomechanical load transfer of the pelvis. Objective: To establish a complete finite element model of the pelvis including the ilium, sacrum, proximal femur and main ligament. The finite element model was validated by measuring the strain on the surface of pelvic specimens under different loads with strain gauges. Finally, the effects of different boundary conditions and hip contact conditions on the mechanical load transfer were analyzed by the validated finite element model. The specimens were recorded at 100-500N intervals (intervals of 100N) by using the WS3811 digital strain gauge. Then a healthy adult female was selected and CT scanned with a slice thickness of 0.3 mm. The image data were stored in the format of Digital Imaging and Communications in Medicine (DICOM). Mimics, Geomagic Studio, Solid Works, Abaqus and other software were used to establish a complete pelvic three-dimensional finite. Model I, model II, and model III were established according to three different hip contact conditions and boundary conditions. Model I established contact surfaces on the femoral head and acetabulum and set them as "Contact Condition" to study the effect of setting the hip as a sliding joint on stress distribution. The hip joint of model III does not contain the femur. Model I and model II constrain the femoral end and model III constrain the acetabular motion center on both sides. Out of the six sites, the stresses at the other three anatomical points on the pelvic surface were measured: the acetabular apex, the posterior wall of the acetabulum and the anterior part of the pelvis near the pubic symphysis. The regression equation and correlation coefficients are y = 1.019x-1.114 and R2 = 0.97, respectively. Meanwhile, with the increase of load level, the correlation coefficient of linear regression increases from R2 = 0.90 at 100N to R2 = 0.98 at 500N, indicating that high load is better than low load. The results of finite element analysis and biomechanics experiment show that the higher the load is, the closer the stress distribution of the three models is to the one of 1. As for the load transfer, the stress distribution of the three models is transmitted along the iliopubic line, and the maximum stress of each model is located in the sacroiliac ligament. In addition, the stress values of model II and III were 390.53% and 103.61% lower than those of model I, respectively. Meanwhile, the stress values of posterior wall of model II were 197.15% and 305.17% higher than those of model I and III, respectively. Normal pelvic biomechanical properties can be well simulated. At the same time, the boundary conditions at the hip joint, contact conditions and anatomical structure of the proximal femur of the pelvis have a great impact on the biomechanical prediction results. Part II Stability and biomechanical compatibility of the three internal fixations in the treatment of sacral fractures. Purpose: To simulate by finite element analysis Two ISS, TBP and MIAP were used to compare the pelvic biomechanical recovery, fracture fixation stability and biomechanical compatibility of the internal fixator after treatment of vertically unstable pelvic fractures. Different instrumentations were then applied to the sacrum under 500N vertical load, 500N vertical load plus 10Nm forward torque, 500N vertical load plus 10Nm right torque to simulate standing posture, forward bending posture and lateral bending posture respectively. The stress transfer was measured at the center of the sacral 1 vertebral body, the horizontal sacroiliac joint of the sacral 1 vertebral body, the sacroiliac joint of the sacral 2 vertebral body, the middle point of the iliopubic line, the acetabular apex and the parapubic symphysis. Three kinds of internal fixator can effectively restore the biomechanical transfer function of the injured pelvis. However, MIAP reduces the stress concentration in the sacroiliac joint area at the level of the sacral 2 vertebral body. At the same time, different motion states have no significant effect on the stress distribution. In standing state, the maximum stress of the TBP model is higher than that of ISS and MIAP models, respectively. The stress shielding phenomena of TBP model were 343.42% and 68.2% higher than that of ISS and MIAP model respectively; the vertical displacement of damaged sacrum of TBP model was only 5.83% and 9.48% higher than that of ISS and MIAP model; the maximum stress of damaged sacrum of MIAP model was 15.84% and 8.84% lower than that of ISS and TBP model, respectively; meanwhile, the results showed that the vertical displacement of damaged sacrum of TBP model was only 5.83% and 9.48% higher than that of ISS and MIAP model. The results showed that the fracture surface stress of TBP model was significantly higher than that of MIAP and ISS models, especially in sacral 2 and sacral 3 vertebrae. At the same time, MIAP and ISS fixation, compared with TBP fixation, reduce the stress concentration on the sacrum and are more conducive to healing process, especially at the broken ends of sacral 2 and sacral 3 vertebral fractures. Finite element analysis was used to simulate bipedal standing position. Two ISS, TBP and MIAP were compared with reconstruction plate in the treatment of unilateral sacroiliac joint dislocation combined with pubic symphysis separation. In the finite element model, all the supporting ligaments and the pubic symphyseal ligaments in the left half of the pelvis were removed to obtain the vertical and rotational instability models. Six measuring points were set up to measure pelvic stress transfer: sacral 1 vertebral body point; sacroiliac joint of sacral 1 vertebral body; sacroiliac joint of sacral 2 vertebral body; sacroiliac joint of sacroiliac 2 vertebral body; midpoint of iliopubic line; acetabular apex and pubic symphysis. Results: Stress nephogram showed that ISS, TBP and MIAP models could effectively restore the biomechanical transfer function of the injured pelvis. After analysis of six stress measurement sites, MIAP reduced the stress concentration in the sacroiliac joint region at the level of the sacral 2 vertebra. In ISS, TBP and MIAP models, the maximum Vo was found. The Von Mises stress in ISS model was 13.6% and 21.12% higher than that in TBP model and MIAP model, respectively. The maximum vertical displacement of MIAP was only 4.46% and 1.74% higher than that of ISS and TBP, respectively. The maximum vertical displacement of damaged sacrum in ISS was only 0.85% and 6.25% higher than that of TBP and MIAP, respectively. Mises stress maxima were 26.11% and 35.35% higher in the TBP and MIAP models, respectively. Meanwhile, the Von Mises stress maxima of the damaged sacrum in the TBP and MIAP models were located at the lower sacroiliac joint, while the ISS model was located at the joint of the screw and the second sacral spinous process. The flexion angles of TBP model group were 288.18% and 256.56% higher than those of ISS and MIAP groups, respectively.
【學(xué)位授予單位】:河北醫(yī)科大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:R687.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 冀云濤,趙莉英,任杰;骨盆骨折保守治療的護(hù)理[J];內(nèi)蒙古科技與經(jīng)濟(jì);2001年03期

2 楊秀華;骨盆骨折患者的護(hù)理[J];齊齊哈爾醫(yī)學(xué)院學(xué)報(bào);2002年07期

3 陳敏波;不穩(wěn)定型骨盆骨折保守治療的護(hù)理[J];齊魯護(hù)理雜志;2003年10期

4 朱杏萍;骨盆骨折的護(hù)理體會[J];蛇志;2005年03期

5 李燕芬;;骨盆骨折的護(hù)理問題及對策84例分析[J];嶺南急診醫(yī)學(xué)雜志;2005年04期

6 徐曉麗;淺談臨床骨盆骨折的護(hù)理[J];時(shí)珍國醫(yī)國藥;2005年03期

7 姚愛云;王莉;盧國珍;;骨盆骨折50例護(hù)理體會[J];河南外科學(xué)雜志;2006年02期

8 臧志萍;呂秀清;何君芳;;不穩(wěn)定型骨盆骨折的護(hù)理體會[J];中醫(yī)正骨;2007年06期

9 阮翠連;;骨盆骨折患者的護(hù)理體會[J];咸寧學(xué)院學(xué)報(bào)(醫(yī)學(xué)版);2007年04期

10 劉玉霞;高燕;康麗;;骨盆骨折患者的護(hù)理體會[J];中國現(xiàn)代藥物應(yīng)用;2009年05期

相關(guān)會議論文 前10條

1 陳華;;骨盆骨折的分類及手術(shù)治療[A];浙江省醫(yī)學(xué)會創(chuàng)傷學(xué)分會成立大會暨2009年浙江省創(chuàng)傷學(xué)術(shù)年會論文匯編[C];2009年

2 幸永明;;骨盆骨折的創(chuàng)傷控制[A];2009年浙江省骨科學(xué)學(xué)術(shù)年會論文匯編[C];2009年

3 常智云;魏瑞琴;崔文芳;;多發(fā)性骨盆骨折并休克的護(hù)理體會[A];第七屆全國創(chuàng)傷學(xué)術(shù)會議暨2009海峽兩岸創(chuàng)傷醫(yī)學(xué)論壇論文匯編[C];2009年

4 張曉芳;劉波;;水療配合中藥奄包,電針治療地震骨盆骨折病人20例的初步觀察[A];第七屆全國創(chuàng)傷學(xué)術(shù)會議暨2009海峽兩岸創(chuàng)傷醫(yī)學(xué)論壇論文匯編[C];2009年

5 陳宏;葉翠英;張彥春;;骨盆骨折合并癥的護(hù)理進(jìn)展[A];泛長江流域骨科新進(jìn)展暨第九屆全國骨科護(hù)理研討會論文匯編[C];2007年

6 李軍;黨星波;同永剛;;急診外科對骨盆骨折救治的體會[A];中華醫(yī)學(xué)會急診醫(yī)學(xué)分會第十六次全國急診醫(yī)學(xué)學(xué)術(shù)年會論文集[C];2013年

7 侯義梅;;骨盆骨折臨床康復(fù)指導(dǎo)及對預(yù)后的影響[A];中華護(hù)理學(xué)會2009全國外科護(hù)理學(xué)術(shù)交流暨專題講座會議論文匯編[C];2009年

8 關(guān)玉華;;骨盆骨折診治的護(hù)理體會[A];中華護(hù)理學(xué)會全國第6屆重癥監(jiān)護(hù)護(hù)理學(xué)術(shù)交流暨專題講座會議論文匯編[C];2009年

9 林湘燕;陳碧珠;陳文君;陳榮芳;;手術(shù)治療骨盆骨折的護(hù)理體會[A];中華護(hù)理學(xué)會第11屆全國骨科護(hù)理學(xué)術(shù)交流暨專題講座會議論文匯編[C];2009年

10 尹華東;鄔春虎;張笑峰;;不穩(wěn)定型復(fù)雜骨盆骨折的治療[A];2009年浙江省骨科學(xué)學(xué)術(shù)年會論文匯編[C];2009年

相關(guān)重要報(bào)紙文章 前4條

1 河北省承德市中心醫(yī)院骨科副主任醫(yī)師 陳望軍 整理 王春艷 劉巖;復(fù)雜骨盆骨折 分類甄別再治療[N];健康報(bào);2013年

2 王春艷 劉巖;市中心醫(yī)院治療復(fù)雜骨盆骨折又辟新徑[N];承德日報(bào);2007年

3 通訊員 朱迎陽 俞志新 本報(bào)記者 李水根;愛的力量讓她重獲新生[N];健康報(bào);2011年

4 通訊員 楊龍 本報(bào)記者 車喜韻;為玉樹傷員提供最好的醫(yī)療服務(wù)[N];陜西日報(bào);2010年

相關(guān)博士學(xué)位論文 前10條

1 紀(jì)曉希;骨盆應(yīng)用解剖學(xué)數(shù)字化測量與髖臼區(qū)域置釘準(zhǔn)確性研究[D];上海交通大學(xué);2015年

2 彭燁;骨盆骨折的微創(chuàng)通道研究與內(nèi)固定生物力學(xué)分析及相關(guān)臨床應(yīng)用[D];中國人民解放軍醫(yī)學(xué)院;2016年

3 胡畔;三維有限元分析比較三種內(nèi)固定物對骨盆后環(huán)損傷的治療效果[D];河北醫(yī)科大學(xué);2017年

4 楊俊驍;湖南省五市九家三級醫(yī)院骨盆骨折流行病學(xué)調(diào)查初步研究[D];中南大學(xué);2013年

5 成亮;湖南省骨盆創(chuàng)傷數(shù)據(jù)庫研制與多中心流行病學(xué)研究[D];中南大學(xué);2014年

6 張奉琪;骨盆骨折血管損傷的解剖學(xué)基礎(chǔ)及影像學(xué)研究[D];河北醫(yī)科大學(xué);2005年

7 張景僚;骨盆三維有限元模型的建立及其分析[D];第一軍醫(yī)大學(xué);2007年

8 王先泉;骨盆內(nèi)固定的臨床解剖學(xué)研究[D];山東大學(xué);2005年

9 吳濤;三種內(nèi)固定器械固定骨盆后環(huán)的相關(guān)基礎(chǔ)及臨床研究[D];河北醫(yī)科大學(xué);2015年

10 阮默;骨盆創(chuàng)傷救治的應(yīng)用解剖和影像學(xué)研究[D];中國人民解放軍第一軍醫(yī)大學(xué);2003年

相關(guān)碩士學(xué)位論文 前10條

1 雷文雄;改良Stoppa入路的內(nèi)固定與外固定架治療骨盆前環(huán)骨折的對比研究[D];南方醫(yī)科大學(xué);2015年

2 廖慶紅;犬骨盆骨折的治療[D];西北農(nóng)林科技大學(xué);2015年

3 徐玉;MIPPO技術(shù)在不穩(wěn)定骨盆前環(huán)骨折治療中的臨床療效分析[D];皖南醫(yī)學(xué)院;2015年

4 苗建華;骨盆骨折合并后尿道損傷與單純骨盆骨折對男性性功能影響的對比研究[D];新疆醫(yī)科大學(xué);2016年

5 李春光;髂骨釘在腰椎骨盆固定的方法及臨床解剖研究[D];山東大學(xué);2016年

6 郭建輝;釘—棒內(nèi)支架治療骨盆前環(huán)骨折釘?shù)绤?shù)的數(shù)字化研究[D];南華大學(xué);2016年

7 王吉選;骨盆骨折大出血的研究進(jìn)展[D];河北醫(yī)科大學(xué);2009年

8 韓哲;紗布填塞在骨盆骨折大出血中的應(yīng)用[D];山東大學(xué);2013年

9 王瑞金;骨盆骨折的臨床流行病學(xué)分析[D];第一軍醫(yī)大學(xué);2007年

10 郭治良;手術(shù)治療不穩(wěn)定型骨盆骨折的療效分析[D];吉林大學(xué);2013年

,

本文編號:2236226

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/2236226.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f968b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com
日本精品免费在线观看| 国产一级内片内射免费看| 色鬼综合久久鬼色88| 欧美午夜一级特黄大片| 免费久久一级欧美特大黄孕妇| 91精品国产综合久久福利| 亚洲专区一区中文字幕| 欧美日韩精品久久亚洲区熟妇人 | 久久综合亚洲精品蜜桃| 情一色一区二区三区四| 一区中文字幕人妻少妇| 国产av精品高清一区二区三区| 99国产精品国产精品九九 | 国产精品欧美在线观看| 国产精品视频久久一区| 欧美整片精品日韩综合| 一区二区欧美另类稀缺| 丝袜诱惑一区二区三区| 亚洲妇女作爱一区二区三区| 国产成人精品一区二区在线看| 亚洲性生活一区二区三区| 亚洲高清亚洲欧美一区二区| 国产传媒精品视频一区| 色无极东京热男人的天堂| 97人妻人人揉人人躁人人| 久久精品中文字幕人妻中文| 免费在线观看激情小视频| 九九九热视频最新在线| 国产成人国产精品国产三级| 99国产高清不卡视频| 国产在线成人免费高清观看av| 韩国日本欧美国产三级| 国产av精品一区二区| 欧美日韩精品一区二区三区不卡 | 天海翼高清二区三区在线| 在线免费观看黄色美女| 黄色片一区二区在线观看| 国产午夜精品在线免费看| 少妇人妻精品一区二区三区| 91麻豆精品欧美视频| 日韩中文字幕有码午夜美女|