天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 醫(yī)學論文 > 外科論文 >

胸鎖關節(jié)解剖型鎖定鋼板的研制及生物力學研究

發(fā)布時間:2018-08-26 16:50
【摘要】:第一部分胸鎖關節(jié)的解剖學及生物力學研究目的:(1)測量胸鎖關節(jié)周圍骨性結構與韌帶的解剖學數(shù)據(jù),觀察其形態(tài)學特點,為胸鎖關節(jié)脫位及周圍骨折解剖鎖定鋼板的研制提供解剖學參數(shù)與理論依據(jù)。(2)對胸鎖關節(jié)及周圍韌帶進行生物力學測試,探討其生物力學特點,為設計用于胸鎖關節(jié)脫位及周圍骨折的內(nèi)固定鋼板提供生物力學依據(jù),也為臨床手術提供生物學參考。方法:(1)選取8具成人防腐、濕潤尸體標本(6男、2女),死亡年齡32-58歲,平均46.5歲。解剖分離出完整的胸骨柄、雙側(cè)鎖骨及胸鎖關節(jié)周圍組織。剝除標本上附著的肌肉及無關軟組織,完整保留雙側(cè)胸鎖關節(jié)、周圍韌帶及關節(jié)囊結構,修整成骨-韌帶-骨標本模型。用墨跡圖及網(wǎng)格計數(shù)法測量本組胸鎖關節(jié)標本的胸骨柄與鎖骨端關節(jié)面積,并進行統(tǒng)計學分析。對所有標本進行CT三維重建,用影像學和解剖學兩種方法測量本組標本以下解剖參數(shù):參考董加純等提供的方法測量胸骨柄厚度,同時測量胸骨切跡寬度,雙側(cè)鎖骨近端三分之一的前后徑、上下徑,鎖骨與胸骨柄在冠狀面所成夾角,胸鎖關節(jié)在解剖位向前的成角,對兩種方法測得的每組數(shù)據(jù)進行統(tǒng)計學分析。(2)觀察本組標本胸鎖前、后韌帶的形態(tài)學特點,分別測量長、寬及厚度,并進行統(tǒng)計學分析。(3)將每副標本的左、右側(cè)胸鎖關節(jié)隨機配對分組:A組測試單純切斷胸鎖前韌帶前后在鎖骨遠端加載0-10N負荷下負載點的位移及角度變化,B組測試單純切斷胸鎖后韌帶前后在鎖骨遠端加載0-10N負荷下負載點的位移及角度變化。參考Spencer的力學實驗研究,操作如下:分別用特制夾具固定標本的胸骨柄端,在解剖位垂直于鎖骨遠端進行前、后方向負載實驗(勻速加載0-10N,加載速度2mm/min)。力學試驗機相連接的終端計算機采集實驗數(shù)據(jù),并繪制負荷-位移曲線。所得位移值根據(jù)正弦三角函數(shù)關系計算出胸鎖關節(jié)向前、后方向所成角度。比較兩組在前、后方向負載下關節(jié)所成的角度及負載-成角回歸直線斜率。實驗數(shù)據(jù)應用SPSS19.0統(tǒng)計學軟件進行分析,P0.05認為具有統(tǒng)計學差異。結果:(1)本組測量的胸骨柄關節(jié)面積(239.00±28.78mm2)小于鎖骨內(nèi)側(cè)端關節(jié)面積(482.56±44.89mm2),有顯著性差異(t=-40.105,P0.001)。胸骨柄厚度,胸骨切跡寬度,雙側(cè)鎖骨近端三分之一的前后徑、上下徑,鎖骨與胸骨柄在冠狀面所成夾角,胸鎖關節(jié)在解剖位向前的成角,在標本大體與CT兩種方法上測量的數(shù)據(jù)結果均無統(tǒng)計學差異(P0.05)。(2)本組測量的胸鎖前韌帶長度為17.56±1.94mm,寬度為15.54±1.42mm,厚度為1.93±0.32 mm。后韌帶長度為17.21±1.86 mm,寬度為15.97±1.17 mm,厚度為2.07±0.29 mm。胸鎖前韌帶長度相較于后韌帶略長,形態(tài)學表現(xiàn)更為松弛,分別比較兩者的長、寬、厚度均無統(tǒng)計學差異(P0.05)。(3)兩組標本在切斷胸鎖韌帶前后,負載0-10N范圍內(nèi),隨著負荷的增加,關節(jié)向前、后方向所成的角度逐漸增大,兩者呈線性關系。切斷韌帶之前,在負荷為2、4、6、8、10N時,負載向前導致關節(jié)向后的成角均小于負載向后導致關節(jié)向前的成角,但僅在負荷為6、8、10N時,差異有統(tǒng)計學意義(P0.05)。負載向前的負載-成角回歸直線斜率小于負載向后的負載-成角回歸直線斜率,差異有統(tǒng)計學意義(F=31.413,P=0.001)。切斷韌帶后,A組與B組在向前負載2、4、6、8、10N時,A組關節(jié)向后的成角均小于B組,差異均有統(tǒng)計學意義(P0.05),A組負載-成角回歸直線斜率小于B組,差異有統(tǒng)計學意義(F=52.224,P0.001)。兩組在向后負載2、4、6、8、10N時,A組關節(jié)向前的成角均大于B組,差異均有統(tǒng)計學意義(P0.05),A組負載-成角回歸直線斜率大于B組,差異有統(tǒng)計學意義(F=12.503,P=0.008)。結論:解剖學和影像學兩種方法測量胸鎖關節(jié)及周圍骨性結構無統(tǒng)計學差異,CT三維重建不僅能對胸鎖關節(jié)脫位進行準確的診斷,也能對胸鎖關節(jié)及周圍骨性結構進行較精確的測量,有助于內(nèi)固定方案的選擇。鎖骨內(nèi)側(cè)端關節(jié)面與胸骨柄關節(jié)面的接觸面狹小,關節(jié)本身不穩(wěn)定,胸鎖韌帶對于維持關節(jié)穩(wěn)定性的作用極為重要。力學實驗表明胸鎖前韌帶主要限制關節(jié)向前成角,胸鎖后韌帶主要限制關節(jié)向后成角,胸鎖韌帶限制關節(jié)向前成角的作用弱于向后成角,又因關節(jié)在解剖位時向前自然成角,胸鎖關節(jié)易發(fā)生前脫位。在手術治療胸鎖關節(jié)脫位及周圍骨折時應重視胸鎖韌帶的修復與重建。第二部分胸鎖關節(jié)解剖鎖定鋼板的研制及生物力學測試目的:研制符合胸鎖關節(jié)解剖學特點,固定可靠,手術操作簡便的解剖鎖定鋼板,為治療胸鎖關節(jié)脫位或周圍骨折提供一種理想的內(nèi)固定器械。通過生物力學實驗對比分析,對胸鎖關節(jié)解剖鎖定鋼板固定胸鎖關節(jié)脫位的生物力學性能進行評價,為進一步臨床應用提供實驗依據(jù)。方法:根據(jù)本組胸鎖關節(jié)標本的解剖學測量參數(shù)及生物力學特性,設計并研制出胸鎖關節(jié)解剖鎖定鋼板。將研制的解剖鎖定鋼板與目前常用的斜“T”形鎖定鋼板進行生物力學對比。本組8具胸鎖關節(jié)骨-韌帶-骨結構標本,均用手術刀完全切斷胸鎖韌帶及關節(jié)囊,造成胸鎖關節(jié)完全脫位模型。將每副標本的左、右側(cè)胸鎖關節(jié)進行隨機配對分組:實驗組ALCP(解剖型鎖定鋼板),對照組OTLCP(斜“T”形鎖定鋼板)。在萬能生物材料試驗機(四川大學生物力學重點實驗室)上模擬胸鎖關節(jié)脫位常見受力機制,分別進行鎖骨遠端負載、胸鎖關節(jié)扭轉(zhuǎn)、鋼板胸骨柄部抗拔出三項生物力學性能測試。生物力學試驗機的終端計算機采集實驗數(shù)據(jù)并繪制應力-變形曲線。實驗數(shù)據(jù)應用SPSS19.0統(tǒng)計學軟件進行分析,P0.05認為具有統(tǒng)計學差異。結果:(1)依據(jù)胸鎖關節(jié)形態(tài)學特點及解剖學測量的參數(shù),研制出解剖鎖定鋼板,并委托具有臨床醫(yī)療器械生產(chǎn)許可的廠家生產(chǎn)。獲得國家實用新型專利及外觀專利,同時申請發(fā)明專利。(2)鎖骨遠端負載實驗中,負載0~20N范圍內(nèi),加載點的負荷與位移呈線性關系。在解剖位垂直于鎖骨遠端向后加載,最大負荷為20N時,ALCP組加載點的位移為8.455±0.981mm,OTLCP組加載點的位移為10.163±1.379 mm,兩組之間有統(tǒng)計學差異(t=-3.012,P=0.020)。在解剖位垂直于鎖骨遠端向上加載,最大負荷為20N時,ALCP組加載點的位移為5.427±1.154mm,OTLCP組加載點的位移為6.393±1.040mm,兩組間無統(tǒng)計學差異(t=-1.459,P=0.188)。ALCP組抗胸鎖關節(jié)鎖骨端向后負載變形的性能更強,抗胸鎖關節(jié)鎖骨端向上負載變形與OTLCP組無明顯差異。(3)胸鎖關節(jié)扭轉(zhuǎn)實驗中,兩組標本在順、逆時針扭轉(zhuǎn)角度0~10°范圍內(nèi),扭矩與扭角之間呈線性關系,隨著扭轉(zhuǎn)角度的增加,扭矩逐漸增大。兩組順時針扭轉(zhuǎn)角為2、4、6、8、10°時,ALCP組扭矩均大于OTLCP組,兩組差異均有統(tǒng)計學意義(P0.05)。兩組逆時針扭轉(zhuǎn)角為2、4、6、8、10°時,ALCP組扭矩均大于OTLCP組,但僅扭角為4、6、8、10°時,兩組差異有統(tǒng)計學意義(P0.05)。兩組扭矩-扭角回歸直線的斜率即扭轉(zhuǎn)剛度,在順時針扭轉(zhuǎn)實驗中,ALCP組扭轉(zhuǎn)剛度為0.122 N.m/°,OTLCP組扭轉(zhuǎn)剛度為0.083 N.m/°,兩組有顯著性差異(F=67.824,P0.001)。逆時針扭轉(zhuǎn)實驗中,ALCP組扭轉(zhuǎn)剛度為0.108 N.m/°,OTLCP組扭轉(zhuǎn)剛度為0.078 N.m/°,兩組有顯著性差異(F=20.992,P=0.002)。ALCP組抗扭轉(zhuǎn)變形的能力優(yōu)于OTLCP組。(4)ALCP組最大抗拔力為225.24±16.02N,OTLCP組最大抗拔力為174.40±21.90N,兩組有顯著性差異(t=5.785,P=0.001),ALCP組固定胸骨柄的抗拔出性能更為優(yōu)越。結論:本課題研制的胸鎖關節(jié)解剖鎖定鋼板是一種依據(jù)胸鎖關節(jié)解剖學特點及生物力學特性設計而成,具有三維固定模式的新型內(nèi)固定器械。其固定可靠、手術操作簡便、創(chuàng)傷小、生物力學性能優(yōu)越,利于早期功能鍛練,為臨床治療胸鎖關節(jié)脫位及周圍骨折提供了一種較理想的內(nèi)固定器械。
[Abstract]:Part I Anatomical and biomechanical study of the sternoclavicular joint Objective: (1) To measure the anatomical data of the osseous structures and ligaments around the sternoclavicular joint and observe their morphological characteristics, so as to provide anatomical parameters and theoretical basis for the development of the anatomical locking plate for the dislocation of the sternoclavicular joint and peripheral fractures. (2) To biologize the sternoclavicular joint and its surrounding ligaments. Methods: (1) Eight adult cadavers (6 males and 2 females) aged 32-58 with a mean age of 46.5 years were dissected and separated completely. Sternal stalk, bilateral clavicle and surrounding tissue of sternoclavicular joint. The attached muscles and unrelated soft tissues were stripped off, the bilateral sternoclavicular joint, surrounding ligaments and joint capsule were completely preserved, and the bone-ligament-bone specimen model was reconstructed. All specimens were reconstructed by CT. The following anatomical parameters were measured by imaging and anatomy: sternal stalk thickness, sternal notch width, anterior and posterior diameters of one third of proximal clavicle, upper and lower diameters, clavicle and sternal stalk in coronal shape, with reference to Dong Jiachun et al. (2) To observe the morphological characteristics of the anterior and posterior ligaments of the sternoclavicle, and measure the length, width and thickness of the anterior and posterior ligaments respectively, and make statistical analysis. (3) The left and right sternoclavicular joints of each pair of specimens were randomly divided into two groups: group A test. The displacement and angle of the loading point were measured before and after the simple transection of the anterior clavicular ligament under 0-10N loading at the distal end of the clavicle. The displacement and angle of the loading point were measured before and after the simple transection of the posterior clavicular ligament under 0-10N loading at the distal end of the clavicle. At the end of sternal stalk, the load experiment was carried out before and after the anatomical position was perpendicular to the distal clavicle (loading 0-10N at a constant speed, loading speed 2mm/min). The experimental data were collected by the computer connected with the mechanical testing machine, and the load-displacement curve was drawn. The displacement values were calculated according to the sinusoidal trigonometric function. Results: (1) The area of sternal stalk joint (239.00 65507 There were significant differences (t = - 40.105, P 0.001). Sternal stalk thickness, sternal notch width, bilateral proximal clavicle one third of the anterior and posterior diameters, upper and lower diameters, clavicle and sternal stalk in the coronal angle, sternoclavicular joint in the anatomical position of the anterior angle, there was no significant difference between the specimen and CT measurement of the two methods (P 0.05). (2) The length, width and thickness of the anterior sternoclavicular ligament were 17.56 (+ 1.94 mm), 15.54 (+ 1.42 mm) and 1.93 (+ 0.32 mm). The length, width and thickness of the posterior ligament were 17.21 (+ 1.86 mm), 15.97 (+ 1.17 mm) and 2.07 (+ 0.29 mm). The length of the anterior sternoclavicular ligament was slightly longer and more relaxed than that of the posterior ligament. There was a linear relationship between the two groups (P 0.05). (3) In the range of 0-10N, the angle of the joint in the forward and backward directions increased with the increase of the load. Before the ligament was cut off, when the load was 2,4,6,8,10N, the angle of the joint in the forward direction was less than that in the backward direction. The linear slope of load-angular regression was less than that of load-angular regression (F = 31.413, P = 0.001). After ligament amputation, the joint of group A and group B angled backward when the load was 2, 4, 6, 8, 10N forward. The linear slope of load-angular regression in group A was significantly lower than that in group B (P 0.05). The linear slope of load-angular regression in group A was significantly lower than that in group B (F = 52.224, P 0.001). The forward angle of joint in group A was greater than that in group B at 2, 4, 6, 8, and 10 N of backward load (P 0.05). The linear slope of load-angular regression in group A was significantly higher than that in group B (P 0.05). Conclusion: There is no significant difference between anatomy and imaging in the measurement of sternoclavicular joint and peripheral bone structure. CT three-dimensional reconstruction can not only diagnose sternoclavicular joint dislocation accurately, but also measure sternoclavicular joint and peripheral bone structure accurately, which is helpful to the selection of internal fixation scheme. The contact surface between the medial clavicle and the sternal stalk is narrow, and the joint itself is unstable. The sternoclavicular ligament plays an important role in maintaining the stability of the joint. Anterior dislocation of the sternoclavicular joint is easy to occur because of the natural angulation of the joint forward in the anatomical position. The repair and reconstruction of the sternoclavicular ligament should be emphasized in the surgical treatment of the dislocation of the sternoclavicular joint and peripheral fractures. Anatomical locking plate is an ideal internal fixator for the treatment of thoracoclavicular joint dislocation or peripheral fracture. The biomechanical properties of the anatomical locking plate for the treatment of thoracoclavicular joint dislocation were evaluated by biomechanical experiments. Methods: According to the anatomical measurement parameters and biomechanical characteristics of the sternoclavicular joint specimens, an anatomical locking plate for the sternoclavicular joint was designed and manufactured. The left and right sternoclavicular joints of each pair of specimens were randomly divided into two groups: the experimental group (ALCP) and the control group (OTLCP). Laboratory) Simulating the common stress mechanism of sternoclavicular dislocation, three biomechanical tests were carried out, including distal clavicular load, sternoclavicular torsion, steel plate sternal handle pull-out resistance. Results: (1) According to the morphological characteristics of the sternoclavicular joint and the parameters of anatomical measurement, an anatomical locking plate was developed and manufactured by a manufacturer licensed for the manufacture of clinical medical instruments. In the ALCP group, the displacement of the loading point was 8.455 65507 The displacement of loading point in ALCP group was 5.427 (+ 1.154 mm) and that in OTLCP group was 6.393 (+ 1.040 mm). There was no significant difference between the two groups (t = - 1.459, P = 0.188). The ALCP group had stronger anti-sternoclavicular end load deformation, and no anti-sternoclavicular end load deformation compared with OTLCP group. (3) In the experiment of sternoclavicular joint torsion, there was a linear relationship between torque and torsion angle in the range of 0-10 degrees clockwise and counter-clockwise, and the torque increased gradually with the increase of torsion angle. The torque in ALCP group was higher than that in OTLCP group at 2,4,6,8,10 degrees, but only at 4,6,8,10 degrees, there was significant difference between the two groups (P 0.05). In counterclockwise torsion test, the torsional stiffness of ALCP group was 0.108 N.m /degrees, and that of OTLCP group was 0.078 N.m /degrees. There was significant difference between the two groups (F = 20.992, P = 0.002). The torsional deformation resistance of ALCP group was better than that of OTLCP group. (4) The maximum pull-out resistance of ALCP group was 225.24 [16.02N] and that of OTLCP group was 174.40. There was a significant difference between the two groups (t = 5.785, P = 0.001). The pullout resistance of sternal stalk fixation in ALCP group was better than that in ALCP group. It has the advantages of simple operation, less trauma, superior biomechanical properties and early functional training. It provides an ideal internal fixation instrument for the treatment of thoracoclavicular dislocation and peripheral fractures.
【學位授予單位】:西南醫(yī)科大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R687;R318.01

【參考文獻】

相關期刊論文 前10條

1 楊琨;陽運康;;胸鎖關節(jié)脫位治療的研究進展[J];中國修復重建外科雜志;2016年01期

2 曾憲華;鄒志強;高洋;劉洋;;胸腔鏡下治療克氏針折斷游走至左上縱隔及右胸腔1例[J];重慶醫(yī)學;2015年05期

3 潘超;瞿緒勇;吳學儀;王振亮;;胸鎖鉤接骨板治療胸鎖關節(jié)脫位及鎖骨近端骨折[J];實用骨科雜志;2015年01期

4 謝志云;王小勇;朱祖巍;徐志旺;;胸鎖關節(jié)功能重建的臨床病例分析[J];中國骨與關節(jié)損傷雜志;2014年11期

5 趙繼;蔡賢華;胡昊;王威;施立奇;聶宇;;T型鋼板與韌帶重建治療陳舊性胸鎖關節(jié)脫位對比研究[J];臨床外科雜志;2014年02期

6 董加純;支中正;顏冰珊;丁磊;尹望平;戴增壽;;鋼纜內(nèi)固定鎖骨近段和胸骨髓腔修復胸鎖關節(jié)脫位:解剖與臨床[J];中國組織工程研究;2014年04期

7 葉小林;王瑞;;T型鋼板內(nèi)固定治療胸鎖關節(jié)脫位78例療效分析[J];中國實用醫(yī)刊;2013年13期

8 陳方虎;趙小平;鄭文標;曾晗冰;冉波;黃輝;王海寶;;胸鎖鉤鋼板治療胸鎖關節(jié)脫位的臨床觀察[J];中國骨傷;2013年05期

9 楊子權;徐光;和利;張衍;王義;賈少英;姜開林;;正常成人胸鎖關節(jié)的16層螺旋CT測量研究[J];上海醫(yī)學影像;2012年03期

10 李遠安;;改良克氏針內(nèi)固定治療胸鎖關節(jié)脫位[J];創(chuàng)傷外科雜志;2012年01期

,

本文編號:2205544

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/2205544.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶a833c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com