三種sMCL和POL重建方法的生物力學(xué)對(duì)比性研究
[Abstract]:Objective: the posterior medial structure of the knee joint is an important part of the medial stable structure of the knee. The superficial (medial collateral ligamens MCL and the posterior oblique ligament (posterior oblique ligaments are the two most important parts of the posterior medial structure of the knee. In the maintenance of knee varus and rotation stability role is complementary to each other. At present, most of the patients with posterior medial structure injury of knee joint are treated by s MCL and POL anatomical reconstruction, and the postoperative results are still different from that of intact knee joint. The aim of this study was to compare the effects of three s MCL and POL reconstruction methods. Methods: fresh frozen cadavers were used as experimental models to compare the stability and biomechanical differences of normal knee joints with those with missing s MCL and POL and with three methods of reconstruction of s MCL and POL. The experimental samples were provided by our hospital. The first type of long arm triangle reconstruction s MCL and POL is defined as the reconstruction of the femoral side of s MCL, the distal end of tibia and the femoral tibia of POL, and the second kind of short arm triangle reconstructs s MCL and POL structures to reconstruct s MCL femoral stop. The proximal tibial tibia and the femoral tibial stop of POL, the third combined with the reconstruction of s MCL and POL structures, the simultaneous reconstruction of s MCL femoral tibia, tibia bilateral tibia and POL tibia. In order to simulate passive motion of knee joint between 0 擄and 90 擄, the stability of complete varus and rotation of knee joint was measured first, then the femoral end of s MCL and POL were cut off and the stability was measured again. S MCL and Pol were reconstructed with long arm triangle, s MCL and Pol with short arm triangle, the knee joint with s MCL and POL were reconstructed with triangle and the knee joint with three methods were reconstructed at each flexion angle (0 擄30 擄60 擄60 擄/ 90 擄), and the angle of rotation and valgus were changed at each flexion angle (0 擄~ 30 擄~ 60 擄~ 60 擄~ 90 擄). Collect data and carry on statistical analysis. Results: compared with the anatomic intact knee joints, the valgus angle of the knee joint increased obviously after the dissection of s MCL and POL, and the range of increase (5.5 擄and 8.6 擄) was also obviously increased at each flexion angle (0 擄/ 30 擄/ 60 擄/ 90 擄), and the range was increased (3.9 擄/ 10.0 擄), and it was also found that when the knee joint's flexion was 30 擄(60 擄), the angle of external rotation also increased obviously (3.9 擄/ 10.0 擄). The internal rotation angle of the knee is also significantly larger than that of the complete knee. The stability of valgus and rotation of knee joint was improved obviously after the three reconstruction methods. However, compared with the complete knee joint, the long and short arm reconstruction had advantages. When the knee joint flexion was 60 擄to 90 擄, the knee joint after the long arm triangle reconstruction had no difference with the complete knee joint, and there was no difference between the external rotation results of the long arm triangle reconstruction and the complete knee joint. The results of external rotation of the knee with short arm triangle reconstruction were different from those of the complete knee joint. Therefore, the long arm triangle reconstruction can better restore the external rotation stability of the knee joint, and there is no difference between the short arm triangle reconstruction and the complete knee joint when the knee flexion is 0 擄. Compared with the complete knee joint, the long arm triangle reconstruction has different results, so the short arm triangle reconstruction method can better restore the stability of the knee joint valgus. Compared with the intact knee joint, the knee joint reconstructed by the combined reconstruction method had no difference in each flexion angle valgus and rotation angle. Conclusion: these three methods of reconstruction s MCL and POL are helpful to restore the biomechanics and stability of knee joint. Compared with the complete knee joint, the triangle reconstruction method of long and short arm has its own advantages and disadvantages, and the reconstruction method combined with the reconstruction method has the best effect. Therefore, in the treatment of posterior medial structure injury of knee joint, reconstruction of the proximal end of s MCL tibia at the same time and distal double stop point can better restore the stability of knee joint.
【學(xué)位授予單位】:河北醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:R687.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張松林;;第4屆世界生物力學(xué)大會(huì)[J];體育科學(xué);2003年01期
2 ;第三屆《醫(yī)用生物力學(xué)》編委會(huì)[J];醫(yī)用生物力學(xué);2003年03期
3 許燕,樊瑜波;法醫(yī)生物力學(xué)研究進(jìn)展[J];生物醫(yī)學(xué)工程學(xué)雜志;2004年01期
4 本刊編輯部;生物力學(xué)研究文稿的寫作須知[J];中國骨傷;2004年11期
5 ;《醫(yī)用生物力學(xué)》更改為雙月刊啟事[J];國際心血管病雜志;2008年01期
6 秦嶺;;生物力學(xué)——一門跨學(xué)科的學(xué)科[J];醫(yī)用生物力學(xué);2008年02期
7 龍勉;;關(guān)于國家自然科學(xué)基金生物力學(xué)學(xué)科優(yōu)先資助領(lǐng)域的思考[J];醫(yī)用生物力學(xué);2009年S1期
8 姜宗來;;我國生物力學(xué)研究發(fā)展三十年[J];醫(yī)用生物力學(xué);2010年S1期
9 樊瑜波;;生物力學(xué)在醫(yī)療器械設(shè)計(jì)和跳傘著陸防護(hù)中的應(yīng)用[J];醫(yī)用生物力學(xué);2010年S1期
10 董禮平;閆巧珍;;步態(tài)生物力學(xué)進(jìn)展淺析[J];內(nèi)江科技;2011年08期
相關(guān)會(huì)議論文 前10條
1 姜宗來;;我國生物力學(xué)學(xué)科發(fā)展的思考[A];第九屆全國生物力學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2009年
2 楊辰;曲峰;;裸足運(yùn)動(dòng)的生物力學(xué)研究綜述[A];第十五屆全國運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會(huì)(CABS2012)論文摘要匯編[C];2012年
3 樊瑜波;;醫(yī)療器械及人工器官的生物力學(xué)設(shè)計(jì)[A];第九屆全國生物力學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2009年
4 成自龍;;人體沖擊生物力學(xué)研究進(jìn)展[A];第四屆全國人—機(jī)—環(huán)境系統(tǒng)工程學(xué)術(shù)會(huì)議論文集[C];1999年
5 迪麗娜·馬合木提;穆合塔爾·沙德爾;哈木拉提·吾甫爾;;維醫(yī)沙療中的生物力學(xué)問題之探討[A];“力學(xué)2000”學(xué)術(shù)大會(huì)論文集[C];2000年
6 孟和;鐘紅剛;;生物力學(xué)與中西醫(yī)結(jié)合骨科的發(fā)展[A];第九次全國中西醫(yī)結(jié)合創(chuàng)傷骨科學(xué)術(shù)大會(huì)論文匯編[C];2001年
7 楊桂通;;探索人體奧秘的古老故事——生物力學(xué)孕育期一瞥[A];力學(xué)史與方法論論文集[C];2003年
8 楊桂通;;探索人體奧秘的古老故事——生物力學(xué)孕育期一瞥[A];力學(xué)史與方法論論文集[C];2003年
9 龔璐璐;丁祖泉;高建新;冷曄;;數(shù)字散斑相關(guān)法及其在醫(yī)用生物力學(xué)領(lǐng)域的應(yīng)用[A];第八屆全國生物力學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
10 劉振田;吳小濤;;生物力學(xué)中多頻振動(dòng)技術(shù)治療的現(xiàn)狀和展望[A];中國生物醫(yī)學(xué)工程學(xué)會(huì)第六次會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議論文摘要匯編[C];2004年
相關(guān)重要報(bào)紙文章 前4條
1 汪雪姣 林嵐;辛勤耕耘在生物力學(xué)園圃中[N];科技日?qǐng)?bào);2004年
2 黃盈盈;走出困境 向高尖端領(lǐng)域發(fā)展[N];福建科技報(bào);2008年
3 王美寬;運(yùn)動(dòng)品牌重視核心競爭力塑造[N];中國服飾報(bào);2008年
4 陳云飛;上海岳陽醫(yī)院 推拿項(xiàng)目獲地方科技一等獎(jiǎng)[N];中國中醫(yī)藥報(bào);2010年
相關(guān)博士學(xué)位論文 前9條
1 許碩貴;動(dòng)態(tài)記憶應(yīng)力的生物力學(xué)研究及臨床意義探討[D];第二軍醫(yī)大學(xué);2001年
2 蘇佳燦;髖臼三維記憶內(nèi)固定系統(tǒng)治療髖臼骨折記憶生物力學(xué)研究——骨盆、髖臼三維模型仿真、力學(xué)模擬與有限元分析[D];第二軍醫(yī)大學(xué);2004年
3 張美珍;非接觸性前交叉韌帶損傷危險(xiǎn)因素的生物力學(xué)研究[D];北京體育大學(xué);2012年
4 趙文志;活骨組織應(yīng)力與重建適應(yīng)實(shí)驗(yàn)及其生物模型研究[D];大連理工大學(xué);2004年
5 連志強(qiáng);骨骼材料與結(jié)構(gòu)的性能仿真及重建模擬研究[D];大連理工大學(xué);2010年
6 陳強(qiáng);揮鞭樣損傷的生物力學(xué)和臨床研究[D];第二軍醫(yī)大學(xué);2005年
7 曹正霖;人工寰齒關(guān)節(jié)研制的解剖學(xué)和生物力學(xué)研究[D];第一軍醫(yī)大學(xué);2001年
8 孔亮;B/2類骨質(zhì)下種植體宏觀結(jié)構(gòu)的生物力學(xué)優(yōu)化設(shè)計(jì)和分析[D];第四軍醫(yī)大學(xué);2007年
9 王旭;足三維有限元建模第一跖列與(?)外翻關(guān)系的臨床與生物力學(xué)研究[D];復(fù)旦大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 王曉猛;三種sMCL和POL重建方法的生物力學(xué)對(duì)比性研究[D];河北醫(yī)科大學(xué);2015年
2 紀(jì)祥;拇指掌指關(guān)節(jié)側(cè)副韌帶損傷的生物力學(xué)研究及臨床應(yīng)用[D];吉林大學(xué);2007年
3 徐振胤;足踝生物力學(xué)動(dòng)態(tài)仿真器的多軸運(yùn)動(dòng)和力協(xié)同控制系統(tǒng)[D];上海交通大學(xué);2013年
4 董春海;髖關(guān)節(jié)生物力學(xué)電測實(shí)驗(yàn)研究[D];延邊大學(xué);2001年
5 姬樹青;糖皮質(zhì)激素局部封閉注射對(duì)肌腱生物力學(xué)和病理學(xué)方面的影響[D];天津醫(yī)科大學(xué);2011年
6 王勃;下肢植入式骨整合假肢的生物力學(xué)研究[D];四川大學(xué);2006年
7 王哲;青少年特發(fā)性脊柱側(cè)凸的生物力學(xué)研究[D];上海交通大學(xué);2007年
8 黃金鑫;縱跳的人體下肢運(yùn)動(dòng)仿真與生物力學(xué)研究[D];吉林大學(xué);2015年
9 楊穎;低強(qiáng)度脈沖超聲對(duì)新生骨成熟過程的生物力學(xué)影響[D];中南大學(xué);2007年
10 姚金志;腰椎屈伸肌群對(duì)腰椎生物力學(xué)影響的有限元研究[D];福建醫(yī)科大學(xué);2009年
,本文編號(hào):2168233
本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/2168233.html