周期性拉伸應(yīng)力調(diào)節(jié)人椎間盤軟骨終板干細胞成骨分化的研究
[Abstract]:Background: intervertebral disc degeneration (IDD) is the precondition and pathological basis of a series of spinal disorders. It is mainly characterized by cervical lumbago, spinal stenosis, disc herniation, and vertebral instability. The study shows that the cervical lumbago is caused by lumbar disc degeneration in all hospital patients. In the process of intervertebral disc degeneration, the components, structures and functions of the intervertebral disc were changed, including the gradual loss of the proteoglycan composition and moisture in the nucleus pulposus, the disorder of the structure of the fibrous ring, the calcification and vascularization of the cartilage endplate, and the adjacent vertebral body. The formation of osteophyte and so on. However, the specific pathophysiological mechanism of intervertebral disc degeneration is not yet clear. Intervertebral disc is the most critical structure in the spinal segment, and it is an early degenerative tissue. Anoxia, abnormal stress and acidic environment are closely related to intervertebral disc degeneration, and stress plays a very important role. A large number of studies have confirmed that the persistent effect of abnormal mechanical factors is one of the main causes of disc degeneration. However, the specific pathophysiological mechanism hidden in this process is not yet clear. In previous studies, we found that human degeneration cartilage endplates are stored in cells like mesenchymal stem cells (Cartilag E endplate derived stem cells, CESCs) has been successfully separated. In addition, our team also found that CESCs has strong clone formation ability and multidirectional differentiation potential. In recent years, the role and mechanism of stress in the process of disc degeneration have been widely concerned and studied. This study aims at the previous research basis. At the same time, the cartilage endplate stem cells were used as the research object. The periodic tensile stress device (FX-4000) was used to load the cartilage endplate stem cells. The effect of periodic tensile stress on the differentiation of cartilage endplate stem cells was preliminarily investigated. We used our previous methods to screen the cartilage endplate stem cells from the first generation cells by using the agarose suspension culture system. By observing the effect of stress on the osteogenesis of the cartilage endplate stem cells, the significance of it in the process of intervertebral disc degeneration was preliminarily discussed in order to degenerate the intervertebral disc. The prevention and treatment of the disease provides new ideas and theoretical basis. The cartilage endplate specimens of the degenerative intervertebral disc (separated from the lumbar spinal fusion surgery) are carried out within 2 hours after the separation. The obtained cartilage endplate tissue is obtained again under an anatomical microscope with an ophthalmic surgical instrument for obtaining the tissue specimen again. After cleaning, after the cleaning, the phosphate buffer solution (phosphate buffer, PBS) was washed. The tissue was cut into a tissue block of about 1mm * 1mm * 1mm size. The cut tissue block was transferred into the 25cm2 culture bottle and added about 5 times the volume of 0.15% type collagenase without serum-free DMEM/F12 medium, at 37, and the 5%CO2 incubator was digested overnight. After the digestion was completed, the digestive juice was filtered with 70 m cell filter net, and the filtrate was transferred into a sterile centrifuge tube. After centrifugal 5min. centrifugation, the centrifuge tube was removed, and the supernatant was removed. The cell precipitation was collected, and the complete medium suspension cell containing BMEM /F12 containing 10%FBS and 1% double resistance was added to the cell culture box. Culture. Change the cell culture medium every 3 days and observe the growth of cartilage endplate cells under the inverted phase microscope. When the primary cultured cells were 90% fusion, CESCs was screened by agar suspension culture system. Then the selected cells were identified by three line differentiation and flow cytometry. The third generation CESCs, which was well growing, was inoculated in the Bio Flex 6 Hole culture plate. After the cell wall growth to 80-90% fusion, the DMEM/F12 culture medium with FBS volume fraction of 1% continued to be cultured for 12 hours to synchronize the cells. Under the action of no inducible factor, the culture plate was placed in the Flexcell-4000TM stress loading system, and 1H was applied. 6h, 12h, 24h, a stretch stimulation with a frequency of 1Hz and a stretch rate of 10%, and a static control experiment. After the traction was completed, the cells were collected, the expression of BMP-2 was detected by Western blot, the partial osteogenesis of the cartilage was measured with Q PCR, and the expression of the chondrogenic gene was changed: 1. after screening the obtained cartilage endplate cells, flow cytometry and three were used. Induced differentiation identification suggested that the selected cells had stem cell characteristics.2. to carry out periodic stress loading of the screened CESCs, and found that the expression of BMP-2, ALP, Runx2, which was related to osteogenesis, was significantly increased compared with the control group, and the difference was statistically significant. The expression of cartilage related gene (SOX9) was associated with the stretching time. The expression level was gradually reduced. Conclusion: 1. through flow cytometry and three lines induced differentiation experiments, we found that the cells we screened have the characteristics of stem cells. This is consistent with our previous experimental results that.2. periodic tensile stress can promote the expression of BMP-2 in cartilage endplate stem cells, while up regulation of osteogenic correlation. Gene expression promotes the differentiation of cartilage endplate stem cells into osteoblasts.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:R681.53
【相似文獻】
相關(guān)期刊論文 前10條
1 王佰川;邵增務(wù);;軟骨終板退變的研究進展[J];中國矯形外科雜志;2009年03期
2 周紅海,黃彥;軟骨終板的結(jié)構(gòu)與生理功能[J];廣西中醫(yī)學(xué)院學(xué)報;1999年01期
3 井夫杰;張靜;詹紅生;;異常應(yīng)力干預(yù)對兔頸軟骨終板超微結(jié)構(gòu)影響的實驗研究[J];中國中醫(yī)骨傷科雜志;2006年02期
4 陸華拓;徐永清;王非;;椎間盤軟骨終板退變及其相關(guān)研究的進展[J];西南國防醫(yī)藥;2009年06期
5 劉斌;戎利民;曾春;瞿東濱;金大地;;椎間失穩(wěn)致兔腰椎軟骨終板退變的形態(tài)學(xué)研究[J];中國臨床解剖學(xué)雜志;2009年04期
6 彭紅心;徐宏光;;細胞凋亡與軟骨終板鈣化的關(guān)系[J];國際骨科學(xué)雜志;2010年05期
7 王非,瞿東濱,金大地;椎間盤軟骨終板退變及其相關(guān)研究進展[J];中華骨科雜志;2003年09期
8 張昭;霍洪軍;;椎間盤軟骨終板的退變機理及其相關(guān)的實驗研究進展[J];內(nèi)蒙古醫(yī)學(xué)院學(xué)報;2005年06期
9 馬驍;楊學(xué)軍;霍洪軍;卡索;劉成;;髓核內(nèi)注射轉(zhuǎn)化生長因子-β_1對兔軟骨終板Ⅱ型膠原表達影響的實驗研究[J];創(chuàng)傷外科雜志;2011年04期
10 韓純杰;王凱;秦秀龍;馬慧勇;曹江龍;;軟骨終板細胞凋亡與頸椎間盤退變關(guān)系的研究[J];長治醫(yī)學(xué)院學(xué)報;2011年04期
相關(guān)會議論文 前9條
1 趙亮;瞿東濱;金大地;;腰椎間盤退變對軟骨終板應(yīng)力分布的影響[A];第八屆全國脊柱脊髓損傷學(xué)術(shù)會議論文匯編[C];2007年
2 袁維;董健;;內(nèi)皮素-1與人腰椎間盤軟骨終板退變的相關(guān)性研究[A];第二十屆全國中西醫(yī)結(jié)合骨傷科學(xué)術(shù)研討會、第二屆中國醫(yī)師協(xié)會中西醫(yī)結(jié)合醫(yī)師分會骨傷科學(xué)術(shù)年會、第十九屆浙江省中西醫(yī)結(jié)合骨傷科專業(yè)委員會學(xué)術(shù)年會論文匯編[C];2013年
3 呂堯;舒鈞;張輝;郭其勇;;兔椎間盤退變過程中軟骨下骨與軟骨終板的相關(guān)性研究[A];第21屆中國康協(xié)肢殘康復(fù)學(xué)術(shù)年會暨第二屆“泰山杯”全國骨科青年科技創(chuàng)新論壇論文摘要[C];2012年
4 趙小丹;楊天府;劉浩;李濤;張聞立;馬立泰;;Ⅰ、Ⅱ型膠原蛋白在不同損傷類型動物模型椎間盤組織內(nèi)的含量變化規(guī)律[A];第20屆中國康協(xié)肢殘康復(fù)學(xué)術(shù)年會論文選集[C];2011年
5 黃益獎;錢勝君;張寧;陳維善;;軟骨終板損傷建立兔頸椎間盤退變模型[A];2009年浙江省骨科學(xué)學(xué)術(shù)年會論文匯編[C];2009年
6 朱庭標(biāo);湯遜;姜偉;周田華;潘險峰;石健;;腰椎軟骨終板破裂癥的診斷及手術(shù)治療[A];第六屆西部骨科論壇暨貴州省骨科年會論文匯編[C];2010年
7 林勝磊;王向陽;夏冬冬;徐華梓;池永龍;;生物力學(xué)因素對軟骨終板的影響[A];2013中國工程院科技論壇暨浙江省骨科學(xué)學(xué)術(shù)年會論文摘要集[C];2013年
8 呂存賢;吳永琴;;益氣活血通絡(luò)法對兔退變椎間盤軟骨終板中Fas/FasL的表達的影響[A];浙江省中醫(yī)藥學(xué)會第二屆“之江中醫(yī)藥論壇”暨2012年學(xué)術(shù)年會文集[C];2012年
9 楊學(xué)軍;馬驍;房芳;霍洪軍;;椎間盤內(nèi)注射TGF-β1對兔退變椎間盤軟骨終板Ⅱ型膠原的影響[A];第十九屆中國康協(xié)肢殘康復(fù)學(xué)術(shù)年會論文選集[C];2010年
相關(guān)博士學(xué)位論文 前7條
1 劉斌;腰椎軟骨終板退變機理的實驗研究[D];第一軍醫(yī)大學(xué);2004年
2 劉蘭濤;人退變椎間盤軟骨終板干細胞的鑒定及性質(zhì)研究[D];第三軍醫(yī)大學(xué);2012年
3 尹若峰;青少年特發(fā)性脊柱側(cè)凸椎間盤軟骨終板蛋白質(zhì)組研究[D];中國協(xié)和醫(yī)科大學(xué);2009年
4 張建鋒;ADAMTS-5在腰椎軟骨終板退變中的表達變化及其機制研究[D];浙江大學(xué);2015年
5 肖學(xué)軍;Tekscan系統(tǒng)測量腰椎軟骨終板壓力及后路固定對腰椎剛度的影響[D];南方醫(yī)科大學(xué);2011年
6 浦波;軟骨終板HMGB1及CD163表達與椎間盤退變研究[D];昆明醫(yī)科大學(xué);2014年
7 趙亮;腰椎間盤人工髓核置換術(shù)的臨床與基礎(chǔ)研究[D];第一軍醫(yī)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 趙小丹;創(chuàng)傷后軟骨終板分子病理改變的基礎(chǔ)研究[D];四川大學(xué);2006年
2 王彥博;人頸椎軟骨終板的結(jié)構(gòu)改變與椎間盤退變的相關(guān)性分析[D];四川醫(yī)科大學(xué);2015年
3 張強;腰椎軟骨終板細胞凋亡與椎間盤退變的關(guān)系研究[D];天津醫(yī)科大學(xué);2008年
4 呂堯;兔軟骨終板退變過程中軟骨下骨與軟骨終板的相關(guān)性研究[D];昆明醫(yī)學(xué)院;2008年
5 袁超;周期性拉伸應(yīng)力調(diào)節(jié)人椎間盤軟骨終板干細胞成骨分化的研究[D];第三軍醫(yī)大學(xué);2015年
6 韓純杰;脊柱軟骨終板細胞凋亡與椎間盤退變關(guān)系的研究[D];天津醫(yī)科大學(xué);2007年
7 徐鑒;退行性脊柱病椎間盤軟骨終板中骨橋蛋白的表達及臨床意義[D];寧夏醫(yī)科大學(xué);2013年
8 張宇;羥基紅花黃素A延緩IL-1β誘導(dǎo)軟骨終板細胞退變的作用機制[D];安徽理工大學(xué);2012年
9 李德芳;大鼠椎間盤軟骨終板細胞凋亡的機制及其治療的相關(guān)研究[D];復(fù)旦大學(xué);2013年
10 陳斌;高表達HOXB4基因?qū)θ塑浌墙K板干細胞增殖及細胞周期的影響[D];第三軍醫(yī)大學(xué);2014年
,本文編號:2139211
本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/2139211.html