天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 醫(yī)學(xué)論文 > 外科論文 >

一體化C1椎板鉤在寰樞椎融合術(shù)中應(yīng)用的生物力學(xué)研究

發(fā)布時(shí)間:2018-07-06 13:41

  本文選題:寰樞椎 + 一體化C1椎板鉤; 參考:《第二軍醫(yī)大學(xué)》2015年博士論文


【摘要】:背景位于枕頸移行部的寰樞椎,解剖結(jié)構(gòu)特殊,毗鄰頸脊髓、椎動(dòng)脈等重要結(jié)構(gòu),且承擔(dān)了頭頸部主要的旋轉(zhuǎn)功能。腫瘤、畸形、炎癥、退變疾病侵犯此區(qū)域可能導(dǎo)致寰樞椎不穩(wěn),寰樞椎不穩(wěn)的處理是臨床上比較棘手的問(wèn)題之一,嚴(yán)重的寰樞椎不穩(wěn)可以導(dǎo)致頸脊髓、神經(jīng)根、血管等重要結(jié)構(gòu)受壓,引起一系列癥狀,甚至導(dǎo)致癱瘓或生命危險(xiǎn),需要手術(shù)干預(yù)。寰樞椎后路固定融合是解決寰樞椎不穩(wěn)的主要手術(shù)方式。寰樞椎后路固定融合經(jīng)歷了鋼絲固定(Gallie法、Brooks法等)、后路椎板鉤(夾)固定(Halifax、Apofix)、C1-2經(jīng)關(guān)節(jié)螺釘固定(Transarticular screw,TA)、后路C1-C2短節(jié)段釘棒系統(tǒng)固定等,目前主要采用C1-2經(jīng)關(guān)節(jié)螺釘或C1-C2短節(jié)段釘棒系統(tǒng)固定,既往生物力學(xué)及臨床研究證實(shí)此類固定技術(shù)能顯著增強(qiáng)寰樞椎穩(wěn)定性,提高植骨融合率。雙側(cè)C1-2經(jīng)關(guān)節(jié)螺釘固定為二點(diǎn)固定,在控制屈伸方面仍有缺陷,聯(lián)合后路鋼絲固定植骨融合則達(dá)到三點(diǎn)固定,在控制寰樞椎所有方向運(yùn)動(dòng)方面均有很好的效果,被公認(rèn)為目前寰樞椎固定的金標(biāo)準(zhǔn),但C1椎板下穿鋼絲有損傷脊髓的風(fēng)險(xiǎn)。我的導(dǎo)師倪斌教授在研究寰樞椎解剖基礎(chǔ)上設(shè)計(jì)了C1椎板鉤(專利號(hào):200720075767.6),并聯(lián)合C1-2經(jīng)關(guān)節(jié)螺釘固定卡壓植骨,該術(shù)式避免了C1椎板下穿鋼絲帶來(lái)的脊髓損傷的風(fēng)險(xiǎn),操作簡(jiǎn)單,且雙側(cè)椎板鉤有穩(wěn)固植骨塊的作用,生物力學(xué)研究證實(shí)其生物力學(xué)穩(wěn)定性與雙側(cè)C1-2經(jīng)關(guān)節(jié)螺釘聯(lián)合后路鋼絲固定植骨融合相當(dāng),臨床應(yīng)用證實(shí)可以很好地促進(jìn)寰樞椎植骨融合,取得了滿意的結(jié)果。然而,此C1椎板鉤仍然存在安裝過(guò)程中與C1-2經(jīng)關(guān)節(jié)螺釘或C2椎弓根螺釘連接困難,裝配繁瑣等問(wèn)題,我們依據(jù)寰樞椎解剖特點(diǎn)再次進(jìn)行改良,設(shè)計(jì)了一體化C1椎板鉤,將C1椎板鉤與棒采用一體化設(shè)計(jì),減少了手術(shù)中裝配環(huán)節(jié),也避免了鉤與棒連接處松動(dòng)、脫出的風(fēng)險(xiǎn);鉤與C1后弓接觸處設(shè)計(jì)了突出的脊,減少了鉤在C1后弓上滑動(dòng),并且根據(jù)寰樞椎解剖學(xué)特點(diǎn)在C1椎板鉤與棒連接處采用向外側(cè)傾斜15度設(shè)計(jì)以及棒的可折彎性能使得一體化C1椎板鉤與C1-2經(jīng)關(guān)節(jié)螺釘或C2椎弓根螺釘可以很好地匹配連接,使得手術(shù)更方便,更簡(jiǎn)單,更可靠,更安全。本課題選擇尸體上頸椎標(biāo)本,利用離體生物力學(xué)方法,研究一體化C1椎板鉤聯(lián)合C1-2經(jīng)關(guān)節(jié)螺釘或C2椎弓根螺釘內(nèi)固定卡壓植骨的生物力學(xué)穩(wěn)定性,為一體化C1椎板鉤的臨床應(yīng)用提供理論指導(dǎo)。脊柱有著復(fù)雜的結(jié)構(gòu),離體生物力學(xué)研究在脊柱生物力學(xué)研究中起到重要作用,但尸體標(biāo)本不好保存,獲得比較困難,而且由于每個(gè)個(gè)體的差異導(dǎo)致不同的標(biāo)本由于自身生物力學(xué)差異而對(duì)實(shí)驗(yàn)結(jié)果的準(zhǔn)確性有很大影響。隨著計(jì)算機(jī)技術(shù)的發(fā)展及有限元研究方法的進(jìn)步,目前三維有限元不但可以模擬脊柱骨性結(jié)構(gòu),而且可以很好地模擬脊柱周圍韌帶等結(jié)構(gòu),不但可以模擬完整的脊柱模型,還可以模擬退變、創(chuàng)傷等脊柱模型進(jìn)行生物力學(xué)研究,并可在脊柱模型上加載各種內(nèi)固定,對(duì)內(nèi)固定生物力學(xué)特點(diǎn)進(jìn)行評(píng)估,為內(nèi)固定的設(shè)計(jì)提供幫助。三維有限元方法對(duì)于脊柱結(jié)構(gòu)、載荷條件等都可以進(jìn)行數(shù)學(xué)形式模擬,通過(guò)任意變化參數(shù)從而了解對(duì)整個(gè)脊柱結(jié)構(gòu)的影響。目前可以模擬接近人體正常的條件下脊柱的活動(dòng)、應(yīng)力等,結(jié)果更加可信,已成為研究脊柱生物力學(xué)的重要工具。本課題在離體生物力學(xué)研究基礎(chǔ)上建立正常人上頸椎的三維有限元模型,并驗(yàn)證其有效性。通過(guò)三維有限元的方法研究一體化C1椎板鉤聯(lián)合C1-2經(jīng)關(guān)節(jié)螺釘或C2椎弓根螺釘內(nèi)固定卡壓植骨的生物力學(xué)穩(wěn)定性以及內(nèi)固定、植骨塊的應(yīng)力分布,闡明生物力學(xué)機(jī)制,為內(nèi)固定器械的設(shè)計(jì)、改進(jìn)提供思路,為臨床治療提供理論指導(dǎo)。目的1、取尸體上頸椎標(biāo)本,利用離體生物力學(xué)方法,研究一體化C1椎板鉤聯(lián)合C1-2經(jīng)關(guān)節(jié)螺釘或C2椎弓根螺釘內(nèi)固定卡壓植骨的生物力學(xué)穩(wěn)定性;2、建立正常人上頸椎的三維有限元模型,并驗(yàn)證其有效性。通過(guò)三維有限元的方法研究一體化C1椎板鉤聯(lián)合C1-2經(jīng)關(guān)節(jié)螺釘或C2椎弓根螺釘內(nèi)固定卡壓植骨的生物力學(xué)穩(wěn)定性以及內(nèi)固定、植骨塊的應(yīng)力分布,闡明生物力學(xué)機(jī)制,為內(nèi)固定器械的設(shè)計(jì)、改進(jìn)提供思路,為臨床治療提供理論指導(dǎo)。方法1、離體生物力學(xué)研究:選擇7具頸椎尸體標(biāo)本(C0-C3),進(jìn)行純力矩加載,行屈伸、左右側(cè)曲、左右旋轉(zhuǎn)生物力學(xué)研究,測(cè)量C1-C2的運(yùn)動(dòng)范圍(ROM)。生物力學(xué)研究的模型分別為:1)完整標(biāo)本模型(Intact);2)Ⅱ型齒狀突骨折失穩(wěn)標(biāo)本模型(Destabilized);3)C1側(cè)塊螺釘聯(lián)合C2椎弓根螺釘固定植骨模型(C1+C2);4)C1-2經(jīng)關(guān)節(jié)螺釘聯(lián)合Gallie固定植骨模型(TA+G);5)一體化C1椎板鉤聯(lián)合C2椎弓根螺釘固定植骨模型(P+H);6)一體化C1椎板鉤聯(lián)合C1-2經(jīng)關(guān)節(jié)螺釘固定植骨模型(TA+H)。對(duì)生物力學(xué)測(cè)量所得的屈伸、左右側(cè)曲、左右旋轉(zhuǎn)的運(yùn)動(dòng)范圍(ROM)進(jìn)行統(tǒng)計(jì)學(xué)分析。2、三維有限元研究:采用螺旋ct對(duì)健康青年男性志愿者進(jìn)行頸椎薄層掃描,提取CT掃描數(shù)據(jù)進(jìn)行建模,得到上頸椎(C0-C3)三維有限元模型。參照離體生物力學(xué)研究方式,制作失穩(wěn)模型及加載不同內(nèi)固定,加載1.5n.m的純力矩,測(cè)量6種模型屈伸、左右側(cè)曲、左右旋轉(zhuǎn)的運(yùn)動(dòng)范圍(ROM)及內(nèi)固定、植骨塊的應(yīng)力值并分析應(yīng)力分布情況,研究一體化C1椎板鉤的生物力學(xué)特點(diǎn)。結(jié)果1、相對(duì)于Intact、Destabilized模型,四種固定方式能顯著改善寰樞椎穩(wěn)定性,C1+C2、TA+G、P+H、TA+H模型在屈伸、左右側(cè)屈、左右旋轉(zhuǎn)時(shí)ROM值明顯小于Intact、Destabilized模型,差異有統(tǒng)計(jì)學(xué)意義(p0.05)。在屈伸、左右側(cè)屈、左右旋轉(zhuǎn),P+H的ROM值均為最大,在屈伸、左右側(cè)屈時(shí),C1+C2、TA+G、P+H、TA+H模型ROM值差異無(wú)明顯統(tǒng)計(jì)學(xué)意義(p0.05)。旋轉(zhuǎn)時(shí),C1+C2、TA+G、TA+H模型ROM值差異無(wú)統(tǒng)計(jì)學(xué)意義(p0.05),C1+C2、TA+G、TA+H模型與P+H模型ROM值差異有統(tǒng)計(jì)學(xué)意義(p0.05)。2、根據(jù)志愿者ct成功建立了完整上頸椎C0-C3的三維有限元模型,并驗(yàn)證證實(shí)其有效性。根據(jù)實(shí)際使用內(nèi)固定相關(guān)參數(shù)建立了各種內(nèi)固定三維有限元模型。在完整的上頸椎C0-C3三維有限元模型基礎(chǔ)上建立ii型齒狀突骨折的失穩(wěn)模型,將內(nèi)植入物和失穩(wěn)模型進(jìn)行組合,建立以下四種內(nèi)固定模型:1)C1側(cè)塊螺釘聯(lián)合C2椎弓根螺釘固定植骨模型(C1+C2);2)C1-2經(jīng)關(guān)節(jié)螺釘聯(lián)合Gallie固定植骨模型(TA+G);3)一體化C1椎板鉤聯(lián)合C2椎弓根螺釘固定植骨模型(P+H);4)一體化C1椎板鉤聯(lián)合C1-2經(jīng)關(guān)節(jié)螺釘固定植骨模型(TA+H)。3、對(duì)1)完整標(biāo)本模型(Intact);2)Ⅱ型齒狀突骨折失穩(wěn)標(biāo)本模型(destabilized);3)C1側(cè)塊螺釘聯(lián)合C2椎弓根螺釘固定植骨模型(C1+C2);4)C1-2經(jīng)關(guān)節(jié)螺釘聯(lián)合gallie固定植骨模型(TA+G);5)一體化C1椎板鉤聯(lián)合C2椎弓根螺釘固定植骨模型(P+H);6)一體化C1椎板鉤聯(lián)合C1-2經(jīng)關(guān)節(jié)螺釘固定植骨模型(TA+H)六種不同三維有限元模型在屈伸、左右側(cè)曲、左右旋轉(zhuǎn)的六個(gè)方向上加載1.5nm的純力矩,通過(guò)位移云圖的方法計(jì)算寰樞椎運(yùn)動(dòng)范圍(ROM),結(jié)果顯示在屈伸、左右側(cè)屈、左右旋轉(zhuǎn)時(shí)ROM值均為TA+GTA+HC1+C2P+HIntactDestabilized,這與生物力學(xué)結(jié)果大致相符。4、通過(guò)應(yīng)力云圖研究?jī)?nèi)固定器械及植骨塊應(yīng)力情況,在TA+G、TA+H固定時(shí)應(yīng)力云圖顯示在TA螺釘應(yīng)力主要集中于螺釘穿過(guò)C1-2關(guān)節(jié)處,且一般是后伸時(shí)應(yīng)力增大,側(cè)屈、旋轉(zhuǎn)時(shí)較小。椎弓根螺釘固定應(yīng)力集中位于螺釘與骨的界面處,且在左右側(cè)彎、左右旋轉(zhuǎn)時(shí)應(yīng)力較大,屈伸時(shí)應(yīng)力較小。一體化C1椎板鉤應(yīng)力集中于一體化C1椎板鉤與C1-2經(jīng)關(guān)節(jié)螺釘或C2椎弓根螺釘連接處,C1椎板鉤與棒一體化集成處無(wú)應(yīng)力集中。在屈伸、左右側(cè)屈、左右旋轉(zhuǎn)時(shí)TA+G、C1+C2固定器械上應(yīng)力較小,TA+H、P+H應(yīng)力較大,其中TA+G中ta承受的應(yīng)力最小,而Gallie承受應(yīng)力在屈伸、側(cè)屈、旋轉(zhuǎn)時(shí)與其他內(nèi)固定承受應(yīng)力比較都為最大。植骨塊承受應(yīng)力主要為植骨塊與寰樞椎接觸處,P+H固定時(shí)植骨塊在屈伸、左右側(cè)屈、左右旋轉(zhuǎn)時(shí)承受應(yīng)力都為最大。不同的內(nèi)固定模型在后伸時(shí)植骨塊應(yīng)力較前屈時(shí)增大,這與實(shí)際相符。結(jié)論1、一體化C1椎板鉤與寰樞椎解剖結(jié)構(gòu)貼合,與C1-2經(jīng)關(guān)節(jié)螺釘或C2椎弓根螺釘連接時(shí)更簡(jiǎn)單,且安裝方便快捷,手術(shù)更安全。與C1-2經(jīng)關(guān)節(jié)螺釘聯(lián)合行寰樞椎固定植骨提供與C1-2經(jīng)關(guān)節(jié)螺釘聯(lián)合Gallie固定植骨相似的生物力學(xué)穩(wěn)定性。一體化C1椎板鉤聯(lián)合C2椎弓根螺釘固定植骨對(duì)旋轉(zhuǎn)活動(dòng)控制較差,可作為不滿足C1-2經(jīng)關(guān)節(jié)螺釘固定條件的患者的備選手術(shù)方案之一。2、一體化C1椎板鉤無(wú)明顯應(yīng)力集中,可有效避免內(nèi)固定斷裂情況,但一體化C1椎板鉤固定模型中TA螺釘應(yīng)力較大,需要注意TA螺釘斷釘可能。一體化C1椎板鉤能限制卡壓的植骨塊活動(dòng),有效避免植骨塊移位、脫落,植骨塊在P+H模型時(shí)所承受應(yīng)力最大,在所有固定模型中后伸較前屈時(shí)植骨塊應(yīng)力有增大,能很好促進(jìn)了植骨融合。
[Abstract]:The background is located in the atlantoaxial vertebra of the occipital neck, with special anatomical structure adjacent to the neck and spinal cord, the vertebral artery and other important structures and the main rotation function of the head and neck. Tumor, malformation, inflammation, and degeneration may cause atlantoaxial instability in this area, and the treatment of atlantoaxial instability is one of the most difficult problems in clinical and serious atlantoaxial. Vertebral instability can lead to the compression of important structures, such as cervical spinal cord, nerve root, and blood vessel, causing a series of symptoms, even paralysis or life risk, requiring surgical intervention. Atlas and axis posterior fixation is the main operation to solve the atlantoaxial instability. The atlantoaxial posterior fixation has undergone steel wire fixation (Gallie, Brooks, etc.), posterior vertebra. The plate hook (Halifax, Apofix), C1-2 through the joint screw fixation (Transarticular screw, TA), and the posterior C1-C2 short segment screw rod system are fixed by the C1-2 through the joint screw or the C1-C2 short segment screw rod system. The previous biomechanical and clinical studies confirm that this kind of fixation technique can significantly enhance the stability of the atlantoaxial and improve the stability of the axis. The fusion rate of bone graft. Bilateral C1-2 is fixed at two points with joint screw fixation. It still has defects in the control of flexion and extension. The combined posterior wire fixation and bone graft fusion can reach three points. It has good effect in controlling all directions of atlantoaxial movement. It is recognized as the gold standard of atlantoaxial fixation, but the C1 underlaminar wear wire is damaged. The risk of the spinal cord. My tutor, Professor Ni Bin, designed the C1 vertebral plate hook (patent number: 200720075767.6) on the basis of the atlantoaxial anatomy, and combined the C1-2 transarticular screw fixation with the bone graft, which avoids the risk of spinal cord injury caused by the C1 interlaminar steel wire. The operation is simple, and the bilateral laminar hook has a solid bone graft. The biomechanical study confirmed that the biomechanical stability was equivalent to the bilateral C1-2 joint screw combined with the posterior wire fixation. The clinical application proved that the fusion of the atlantoaxial bone graft could be promoted well. However, the C1 laminar hook still existed with the C1-2 transarticular screw or the C2 pedicle screw during the installation process. Problems such as difficult and cumbersome, we modified the atlantoaxial anatomy again, designed the integrated C1 laminar hook, integrated the C1 laminar hook and rod design, reduced the assembly link in the operation, and avoided the risk of loosening and removal of the hook and rod connection. The hook designed a prominent ridge with the contact of the rear arch of the C1 and reduced the hook in C1 In the posterior arch, and according to the anatomical characteristics of the atlantoaxial anatomy, the 15 degree design of the lateral inclination of the C1 vertebral plate hook and the rod connection and the bending performance of the rod make the integrated C1 laminar hook fit well with the C1-2 screw or the C2 pedicle screw, making the operation more convenient, simpler, more reliable and safer. To study the biomechanical stability of the integrated C1 laminectomy hook combined with C1-2 transarticular screw or C2 pedicle screw fixation, the biomechanical stability of the integrated C1-2 laminectomy hook combined with the internal fixation of the pedicle screw of the pedicle screw was studied by using the biomechanical method in vitro. The spinal column has a complex structure, and the biomechanical study of the spinal column is in the spine. The study of physical mechanics plays an important role, but the specimen is not well preserved, and it is difficult to obtain. And the difference of each individual causes the different specimens to have a great influence on the accuracy of the experimental results because of their own biomechanical differences. With the development of computer technology and the progress of the finite element method, the present three-dimensional finite element method is used. It can not only simulate the bone structure of the spinal column, but also simulate the structure of the ligaments around the spinal column. It can not only simulate the complete spinal model, but also simulate the biomechanical study of the spinal model, such as degeneration and trauma, and can load various internal fixates on the spinal model and evaluate the internal fixation biomechanics. The three-dimensional finite element method can be used to simulate the structure of the spine, load conditions and so on. The effect of the spinal structure on the normal condition of the human body can be simulated, and the results are more credible. A three-dimensional finite element model of the normal human upper cervical spine was established on the basis of the study of the biomechanics in vitro, and its effectiveness was verified. The biomechanical stability and internal fixation of the integrated C1 laminectomy hook combined with C1-2 transarticular screw or C2 pedicle screw internal fixation was studied by the three-dimensional finite element method. To determine the stress distribution of bone graft, clarify the mechanism of biomechanics, design for internal fixation instruments, provide ideas for improvement and provide theoretical guidance for clinical treatment. Objective 1 to take the specimens of the cervical vertebrae on the cadavers and to study the birth of the integrated C1 laminectomy hook combined with C1-2 transarticular screw or C2 pedicle screw fixation. 2, a three-dimensional finite element model of the normal human upper cervical spine was established and its validity was verified. The biomechanical stability and internal fixation, the stress distribution of the bone graft, and the biomechanics of the integrated C1 laminectomy hook combined with C1-2 transarticular screw or C2 pedicle screw fixation were studied by the three-dimensional finite element method. Mechanism, for the design of internal fixation instruments, to provide ideas for improvement and to provide theoretical guidance for clinical treatment. Method 1, in vitro biomechanical study: select 7 cervical cadaver specimens (C0-C3), carry out pure torque loading, flexion and extension, left and right side curvature, left and right rotation biomechanics research, and measure the range of motion of C1-C2 (ROM). Biomechanical research model respectively 1) complete specimen model (Intact); 2) type II odontoid fracture instability specimen model (Destabilized); 3) C1 side block screw combined with C2 pedicle screw fixation bone graft model (C1+C2); 4) C1-2 via joint screw combined with Gallie fixed bone graft model (TA+G); 5) one bulk C1 laminectomy hook combined C2 pedicle screw fixation bone graft model (P+H); 6) integrated C1 vertebra Plate hook combined with C1-2 transarticular screw fixation model (TA+H). A statistical analysis of flexion and extension, left and right side curvature, and rotational motion range (ROM) obtained by biomechanical measurements,.2, three-dimensional finite element study: Spiral CT was used to scan the cervical vertebrae of healthy young male volunteers, and the CT scan data were extracted and the upper neck was obtained. The three-dimensional finite element model of vertebra (C0-C3) was used to make the instability model and load the different internal fixation and load the pure torque of 1.5n.m, to measure the flexion and extension of the 6 models, the left and right side curvature, the left and right motion range (ROM) and the internal fixation, the stress value of the bone graft and the distribution of the stress, and to study the birth of the integrated C1 vertebral lamina hook. Results 1, compared with Intact, Destabilized model, four fixed ways can significantly improve the stability of atlantoaxial, C1+C2, TA+G, P+H, TA+H model in flexion and extension, left and right lateral flexion, ROM value is obviously less than Intact, Destabilized model, the difference has statistical significance (P0.05). In flexion, left and right lateral flexion, P+H ROM values. There was no significant difference in ROM value between C1+C2, TA+G, P+H, TA+H model in flexion and extension and left and right side flexion (P0.05). The difference of ROM values of C1+C2, TA+G and TA+H model was not statistically significant (P0.05) when rotating, and there was a significant difference between the ROM values of C1+C2, TA+G and TA+H model. The three-dimensional finite element model of -C3 was verified and proved to be effective. Based on the actual internal fixation parameters, various internal fixed three-dimensional finite element models were established. On the basis of the complete C0-C3 three-dimensional finite element model of the upper cervical spine, the instability model of II odontoid fracture was established, and the internal implants and instability models were combined to establish the following four Internal fixation model: 1) C1 side block screw combined with C2 pedicle screw fixation bone graft model (C1+C2); 2) C1-2 through joint screw combined with Gallie fixed bone graft model (TA+G); 3) integrated C1 laminectomy hook combined with C2 pedicle screw fixation model (P+H); 4) integrated C1 vertebra hook combined with C1-2 transarticular screw fixation model (TA+H), to 1) complete standard The model (Intact); 2) type II odontoid fracture instability specimen model (destabilized); 3) C1 side block screw combined with C2 pedicle screw fixation bone graft model (C1+C2); 4) C1-2 via joint screw combined with Gallie fixed bone graft model (TA+G); 5) integrated C1 vertebral plate hook combined C2 vertebral pedicle screw fixation model (P+H); 6) integrated C1 laminectomy hook combined hook Six different three-dimensional finite element models of the joint screw fixation (TA+H) were used to load the pure torque of 1.5nm in the flexion and extension, the left and right sides and the left and right rotation. The movement range of the atlantoaxial (ROM) was calculated by the method of displacement cloud. The results showed that the ROM value was TA+GTA+HC1+C2P+HIntactDestab at the flexion and extension, the left and right side flexion and the left and right rotation. Ilized, which is roughly consistent with the biomechanical results,.4. The stress cloud map is used to study the stress situation of internal fixation instruments and bone graft. At TA+G, the stress cloud chart at the time of TA+G and TA+H shows that the stress in the TA screw mainly concentrates on the screw through the C1-2 joint, and generally the stress increases, the lateral flexion, and the rotation is smaller. The stress concentration of the pedicle screw is fixed. At the interface of screw and bone, and bending on the left and right side, the stress is larger in the left and right rotation, and the stress is small when flexion and extension. The integrated C1 laminar hook stress is concentrated on the integrated C1 laminar hook and C1-2 through the joint screw or the C2 pedicle screw, and the C1 laminar hook and the rod integration place has no stress concentration. At the flexion and extension, the left and right side flexion, and the right and left rotation TA+ G, C1+C2 fixed apparatus stress is small, TA+H, P+H stress is larger, of which TA+G TA bear the minimum stress, while Gallie bear stress in flexion and extension, lateral flexion, rotation and other internal fixation stress is the largest. The stress of the bone graft is mainly the bone graft and the atlantoaxial contact, P+H fixed bone graft in flexion and extension, left and right flexion, left, left, left, and left The stress at the right rotation is the largest. The stress of the different internal fixation models increases when the extension is more than the forward flexion. Conclusion 1, the integration of the integrated C1 lamina hook and the atlantoaxial anatomical structure is more simple with C1-2 through the joint screw or the C2 pedicle screw, and the installation is convenient and fast, and the operation is safer. The operation is more safe with C1-2. Joint screw fixation with atlantoaxial fixation provides similar biomechanical stability to C1-2 transarticular screws combined with Gallie fixation. The integrated C1 laminectomy hook combined with C2 pedicle screw fixation has a poor control of rotation activity, which can be used as one of the alternative surgical procedures for patients with unsatisfied C1-2 transarticular screws. There is no obvious stress concentration in the C1 vertebral lamina hook, which can effectively avoid internal fixation fracture. However, in the integrated C1 laminar hook fixation model, the stress of TA screws is larger. It is necessary to pay attention to the possibility of breaking the nail by the TA screw. The integrated C1 lamina hook can restrict the bone graft of the compression plate, effectively avoid the displacement of the bone graft and the maximum stress of the bone graft in the P+H model. In all the fixed models, the stress of the bone graft increased when compared with the anterior flexion, which promoted bone graft fusion.
【學(xué)位授予單位】:第二軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:R687.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 何大新,李振宇;創(chuàng)傷性寰樞椎不穩(wěn)治療方法的選擇[J];中國(guó)矯形外科雜志;2005年14期

2 趙亞偉,楊衛(wèi)山,王琳;不同類型寰樞椎失穩(wěn)的治療[J];河北醫(yī)學(xué);2001年10期

3 李臨齊,呂龍,劉劍峰,武瑞星,黎明,劉江;外傷性寰樞椎不穩(wěn)的手術(shù)治療[J];中華創(chuàng)傷雜志;2004年04期

4 楊友剛,權(quán)正學(xué);寰樞椎不穩(wěn)和脫位的診治進(jìn)展[J];頸腰痛雜志;2005年03期

5 權(quán)正學(xué),歐云生,蔣電明,安洪;寰樞椎不穩(wěn)及脫位的外科治療[J];實(shí)用骨科雜志;2005年01期

6 劉景發(fā);寰樞椎手術(shù)現(xiàn)狀[J];實(shí)用醫(yī)學(xué)雜志;2005年04期

7 陳學(xué)明;張雪梅;李響;于振山;汪新華;劉亮;王德成;關(guān)驊;;寰樞椎骨折的非手術(shù)治療[J];中國(guó)脊柱脊髓雜志;2006年08期

8 王軍;賈東林;李水清;;經(jīng)皮擴(kuò)張氣管造口術(shù)在寰樞椎手術(shù)中的應(yīng)用[J];中華外科雜志;2006年20期

9 韓華;姜永宏;馬曉文;;螺旋CT在寰樞椎病變中的應(yīng)用[J];實(shí)用放射學(xué)雜志;2008年03期

10 徐世康;閔維陽(yáng);楊娜;趙志勇;;多層螺旋CT對(duì)寰樞椎骨折診斷價(jià)值評(píng)價(jià)[J];現(xiàn)代臨床醫(yī)學(xué);2011年01期

相關(guān)會(huì)議論文 前10條

1 喬廣宇;張遠(yuǎn)征;余新光;;寰樞椎不穩(wěn)的手術(shù)治療(附20例報(bào)告)[A];中國(guó)醫(yī)師協(xié)會(huì)神經(jīng)外科醫(yī)師分會(huì)第四屆全國(guó)代表大會(huì)論文匯編[C];2009年

2 高輝;賴笑雨;;寰樞椎不穩(wěn)的手術(shù)治療[A];第三屆中西醫(yī)結(jié)合脊柱及相關(guān)疾病學(xué)術(shù)年會(huì)論文集[C];2009年

3 梁國(guó)鈞;董永強(qiáng);何鑫東;袁波;;經(jīng)椎弓根螺釘固定治療寰樞椎不穩(wěn)[A];2009年浙江省骨科學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2009年

4 池永龍;王向陽(yáng);;寰樞椎創(chuàng)傷的微創(chuàng)手術(shù)治療相關(guān)問(wèn)題探討[A];中國(guó)中西醫(yī)結(jié)合學(xué)會(huì)脊柱醫(yī)學(xué)專業(yè)委員會(huì)第六屆學(xué)術(shù)年會(huì)論文集[C];2013年

5 高向東;;X線數(shù)字融合體層攝影在寰樞椎病變?cè)\斷的臨床應(yīng)用[A];2010中華醫(yī)學(xué)會(huì)影像技術(shù)分會(huì)第十八次全國(guó)學(xué)術(shù)大會(huì)論文集[C];2010年

6 董謝平;沈錄峰;袁中平;周立義;熊龍;;創(chuàng)傷性寰樞椎不穩(wěn)的后路內(nèi)固定治療[A];“2008災(zāi)害創(chuàng)傷與急救新進(jìn)展”學(xué)術(shù)交流會(huì)學(xué)術(shù)論文集[C];2008年

7 高輝;賴笑雨;;寰樞椎不穩(wěn)的手術(shù)治療[A];第十九屆全國(guó)中西醫(yī)結(jié)合骨傷科學(xué)術(shù)研討會(huì)論文匯編[C];2012年

8 王雷;趙慶華;柳超;劉鋮yN;夏天;董雙海;田紀(jì)偉;;寰樞椎復(fù)合骨折的臨床治療方法選擇[A];第21屆中國(guó)康協(xié)肢殘康復(fù)學(xué)術(shù)年會(huì)暨第二屆“泰山杯”全國(guó)骨科青年科技創(chuàng)新論壇論文摘要[C];2012年

9 田紀(jì)偉;趙慶華;王雷;董雙海;夏天;;經(jīng)寰樞椎椎弓根系統(tǒng)固定融合治療創(chuàng)傷性寰樞椎不穩(wěn)[A];第20屆中國(guó)康協(xié)肢殘康復(fù)學(xué)術(shù)年會(huì)論文選集[C];2011年

10 李方才;陳其昕;陳維善;徐侃;吳瓊?cè)A;;成人寰樞椎旋轉(zhuǎn)固定的臨床特征及治療方法[A];2009年浙江省骨科學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2009年

相關(guān)重要報(bào)紙文章 前10條

1 聞多;脖子疼可能寰樞椎有問(wèn)題[N];醫(yī)藥養(yǎng)生保健報(bào);2007年

2 于紅邋張獻(xiàn)懷;治兒童寰樞椎半脫位先復(fù)位[N];健康報(bào);2007年

3 張獻(xiàn)懷;兒童頸部外傷易引發(fā)寰樞椎半脫位[N];中國(guó)醫(yī)藥報(bào);2007年

4 張獻(xiàn)懷;警惕兒童外傷引起寰樞椎半脫位[N];中國(guó)中醫(yī)藥報(bào);2007年

5 張獻(xiàn)懷;警惕兒童頸部外傷引起寰樞椎半脫位[N];科技日?qǐng)?bào);2007年

6 姚永玲;北醫(yī)三院: 實(shí)施國(guó)內(nèi)首例寰樞椎區(qū)域腫瘤切除術(shù)[N];人民日?qǐng)?bào);2005年

7 本報(bào)通訊員 張獻(xiàn)懷;警惕兒童頸部外傷引起的寰樞椎半脫位[N];大眾科技報(bào);2007年

8 保健時(shí)報(bào)特約記者 張獻(xiàn)懷;警惕兒童頸部外傷引起寰樞椎半脫位[N];保健時(shí)報(bào);2007年

9 中日友好醫(yī)院骨科(脊柱外科) 蔣欣 博士;當(dāng)心運(yùn)動(dòng)釀成大災(zāi)難[N];保健時(shí)報(bào);2006年

10 曾理;寰樞椎關(guān)節(jié)脫位 有了經(jīng)口糾正法[N];健康報(bào);2003年

相關(guān)博士學(xué)位論文 前10條

1 劉琦;寰樞椎融合術(shù)后下頸椎曲度異常的基礎(chǔ)和臨床研究[D];第二軍醫(yī)大學(xué);2016年

2 許天明;一體化C1椎板鉤在寰樞椎融合術(shù)中應(yīng)用的生物力學(xué)研究[D];第二軍醫(yī)大學(xué);2015年

3 蔣偉宇;新型寰樞椎后路動(dòng)態(tài)固定系統(tǒng)的研制與實(shí)驗(yàn)研究[D];浙江中醫(yī)藥大學(xué);2012年

4 吳廣森;“V”型記憶合金寰樞椎內(nèi)固定器的設(shè)計(jì)與研究[D];第一軍醫(yī)大學(xué);2006年

5 管華鵬;寰樞椎后路非對(duì)稱內(nèi)固定的生物力學(xué)研究[D];第二軍醫(yī)大學(xué);2014年

6 舒小秋;新型形態(tài)記憶合金頸椎夾鉤治療寰樞椎不穩(wěn)的基礎(chǔ)與臨床研究[D];第一軍醫(yī)大學(xué);2006年

7 楊健;三種后路寰樞椎混雜內(nèi)固定技術(shù)的三維有限元分析及臨床評(píng)價(jià)[D];第二軍醫(yī)大學(xué);2011年

8 周風(fēng)金;后路寰樞椎限制性非融合內(nèi)固定裝置的設(shè)計(jì)及其可行性研究[D];第二軍醫(yī)大學(xué);2011年

9 陳前芬;寰樞椎椎弓根螺釘技術(shù)的解剖與生物力學(xué)研究及三維CT應(yīng)用研究[D];南方醫(yī)科大學(xué);2009年

10 李松凱;寰樞椎側(cè)塊關(guān)節(jié)融合器的研制及力學(xué)研究[D];第二軍醫(yī)大學(xué);2011年

相關(guān)碩士學(xué)位論文 前10條

1 張建華;徒手寰樞椎椎弓根螺釘置入技術(shù)的安全性研究[D];延安大學(xué);2015年

2 黃克敏;寰椎新型環(huán)抱鉤棒系統(tǒng)與釘棒系統(tǒng)治療寰樞椎不穩(wěn)的臨床療效比較[D];南華大學(xué);2015年

3 鄧淼;寰樞椎椎弓根螺釘治療寰樞椎不穩(wěn)及脫位的臨床效果[D];重慶醫(yī)科大學(xué);2015年

4 馬龍祥;基于3D打印模型輔助后路內(nèi)固定治療寰樞椎不穩(wěn)定[D];新鄉(xiāng)醫(yī)學(xué)院;2016年

5 繆鋅;醫(yī)學(xué)三維重建結(jié)合3D打印技術(shù)在寰樞椎椎弓根螺釘個(gè)體化置入的應(yīng)用基礎(chǔ)研究[D];南昌大學(xué);2016年

6 翟連文;寰樞椎腹側(cè)結(jié)構(gòu)測(cè)量與前路寰樞椎復(fù)位器械的設(shè)計(jì)及初步臨床應(yīng)用[D];山東大學(xué);2008年

7 董小通;手術(shù)治療寰樞椎不穩(wěn)定[D];鄭州大學(xué);2011年

8 劉瑞端;寰樞椎不穩(wěn)圍手術(shù)期危險(xiǎn)因素分析及治療策略[D];中國(guó)醫(yī)科大學(xué);2010年

9 金聰;創(chuàng)傷性寰樞椎不穩(wěn)的手術(shù)治療[D];浙江大學(xué);2012年

10 張功恒;寰樞椎三維有限元模型的建立及其應(yīng)用[D];廣西醫(yī)科大學(xué);2009年

,

本文編號(hào):2102959

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/2102959.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c2718***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
国产午夜福利片在线观看| 亚洲中文字幕在线观看四区| 色婷婷视频在线精品免费观看| 一二区中文字幕在线观看| 亚洲综合一区二区三区在线| 九九热视频网在线观看| 国产日韩欧美专区一区| 成人免费在线视频大香蕉| 亚洲天堂精品1024| 国产精品免费不卡视频| 国产在线不卡中文字幕| 午夜福利激情性生活免费视频| 国产中文字幕久久黄色片| 欧美一区二区三区视频区| 中文文精品字幕一区二区| 国产一区二区熟女精品免费| 翘臀少妇成人一区二区| 91亚洲国产成人久久精品麻豆| 日韩人妻一区中文字幕| 精品日韩欧美一区久久| 欧美久久一区二区精品| 亚洲最新一区二区三区| 国产成人精品综合久久久看| 国产高清在线不卡一区| 丝袜破了有美女肉体免费观看 | 欧美国产极品一区二区| 欧美日韩亚洲国产综合网| 国产精品福利一级久久| 国产精品视频一级香蕉| 日韩国产亚洲欧美激情| 中文字幕人妻av不卡| 日韩欧美在线看一卡一卡| 青青操日老女人的穴穴| 亚洲视频在线观看你懂的| 韩日黄片在线免费观看| 亚洲国产一区精品一区二区三区色| 亚洲中文字幕在线观看黑人| 国产一级不卡视频在线观看| 91久久精品在这里色伊人| 精品欧美日韩一二三区| 精品al亚洲麻豆一区|