天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 醫(yī)學(xué)論文 > 外科論文 >

一項(xiàng)對(duì)466個(gè)中國(guó)漢族健康成人的回顧性分析:年齡對(duì)股骨近端幾何形態(tài)的影響

發(fā)布時(shí)間:2018-05-31 00:41

  本文選題:年齡 + 股骨近端參數(shù) ; 參考:《南方醫(yī)科大學(xué)》2016年碩士論文


【摘要】:研究背景近年來(lái)對(duì)于股骨近端幾何參數(shù)對(duì)骨折風(fēng)險(xiǎn)預(yù)測(cè)的認(rèn)識(shí)越來(lái)越受到廣大研究者的重視,雖然大家的研究及結(jié)果并不一致,甚至有完全相反的結(jié)果出現(xiàn),這可能于其研究對(duì)象,樣本量,及地域等有關(guān)系。Li et al.對(duì)股骨頸局部力學(xué)分析來(lái)預(yù)測(cè)髖部骨質(zhì)疏松相關(guān)的骨折,研究發(fā)現(xiàn)通過(guò)股骨近端幾何形態(tài)參數(shù)來(lái)分析股骨近端的幾何力學(xué)情況,對(duì)預(yù)測(cè)髖部骨質(zhì)疏松相關(guān)的骨折是非常有價(jià)值的,但分析股骨近端幾何形態(tài)參數(shù)以及力學(xué)分析和骨密度分析一起并不能提高預(yù)測(cè)概率。Gundi et al.[1]等進(jìn)行了一個(gè)五年的隊(duì)列研究,來(lái)研究股骨頸骨密度和股骨頸干角對(duì)絕經(jīng)后婦女的髖部骨折風(fēng)險(xiǎn)的預(yù)測(cè),得出的結(jié)論是有較大的頸干角的女性,髖部骨折的發(fā)生率明顯高于頸干角較小的女性,老年女性相對(duì)于年輕女性有更高的骨折風(fēng)險(xiǎn),而頸干角較大且骨密度較低的女性中,老年人和年輕人發(fā)生髖部骨折的風(fēng)險(xiǎn)差異不大,沒(méi)有統(tǒng)計(jì)學(xué)差異。他們還發(fā)現(xiàn),骨密度較低的,具有比較長(zhǎng)的髖部軸線,和較大股骨頸干角的女性,不管有無(wú)其他危險(xiǎn)因素,都是髖部骨折的高危人群,然而他們也提出,股骨頸直徑對(duì)髖關(guān)節(jié)骨折風(fēng)險(xiǎn)的預(yù)測(cè)是沒(méi)有意義的。對(duì)于老年女性和青少年女性的比較,除了骨密度較低結(jié)合較大頸干角組這兩個(gè)年齡段的女性骨折風(fēng)險(xiǎn)之間無(wú)統(tǒng)計(jì)學(xué)差異,其他比較都是老年女性的骨折風(fēng)險(xiǎn)較高,他們還比較了絕經(jīng)后婦女的骨折風(fēng)險(xiǎn)和65歲以上女性骨折風(fēng)險(xiǎn),發(fā)現(xiàn)兩者之間的差異也無(wú)統(tǒng)計(jì)學(xué)差異。通過(guò)對(duì)以上數(shù)據(jù)的比較,作者得出結(jié)論:在他所測(cè)量的股骨近端幾何形態(tài)參數(shù)中,股骨頸干角對(duì)骨折風(fēng)險(xiǎn)預(yù)測(cè)的作用最大,而且股骨頸干角對(duì)骨折風(fēng)險(xiǎn)的預(yù)測(cè)不受年齡和骨密度的影響,可以作為單獨(dú)預(yù)測(cè)的因素。Kamath et al.[2]對(duì)135個(gè)病人進(jìn)行了回顧分析,發(fā)現(xiàn)髖臼前傾角對(duì)骨折類型的預(yù)測(cè)似乎是沒(méi)有意義的,但對(duì)骨折風(fēng)險(xiǎn)的預(yù)測(cè)可能存在一定的意義。作者總結(jié)說(shuō)髖臼前傾角并不能預(yù)測(cè)老年病人的骨折類型,盡管髖臼前傾角發(fā)生變化可能帶來(lái)髖臼股骨撞擊綜合征這個(gè)并發(fā)癥,而這個(gè)并發(fā)癥又容易導(dǎo)致股骨頸骨折.Im et al.[3]等研究了股骨近端幾何形態(tài)參數(shù)在朝鮮人群中對(duì)骨折風(fēng)險(xiǎn)的預(yù)測(cè),結(jié)果發(fā)現(xiàn)在轉(zhuǎn)子間骨折的病人中,病人的髖部軸線和股骨頸干角是明顯大于正常對(duì)照組。但是,髖部軸線的長(zhǎng)度和股骨頸干角在股骨頸骨折的預(yù)測(cè)是沒(méi)有意義的,也就是說(shuō)股骨頸骨折組和正常對(duì)照組病人的髖部軸線以及股骨頸干角之間的差異是沒(méi)有統(tǒng)計(jì)學(xué)意義的。此外股骨頸骨折組的病人的偏心距明顯小于正常對(duì)照組,在轉(zhuǎn)子間骨折組中,隨著髖部軸線的增加,髖部軸線每增加lsd將導(dǎo)致股骨轉(zhuǎn)子間骨折概率上升1.64倍。股骨頸干角沒(méi)增加1sd將導(dǎo)致股骨轉(zhuǎn)子間骨折發(fā)生率增加2.32倍。股骨頸骨折病人中,偏心距每增加1sd將導(dǎo)致股骨頸骨折風(fēng)險(xiǎn)提高2.03倍。Masako et al.[4]等人對(duì)日本女性進(jìn)行了一項(xiàng)研究,他們通過(guò)臨床CT來(lái)測(cè)量股骨近端幾何形態(tài)參數(shù)從而來(lái)研究股骨近端幾何形態(tài)參數(shù)與髖部骨折的風(fēng)險(xiǎn)關(guān)系。他們得出結(jié)論,股骨頸骨折的日本女性比正常日本女性有更長(zhǎng)的髖部軸線,而股骨轉(zhuǎn)子間骨折的日本女性相對(duì)于正常日本女性的股骨頸干角明顯更大。Frost et al.[5]等人研究了髖臼前傾角和股骨前傾角對(duì)股骨頸骨折的影響,發(fā)現(xiàn)髖臼前傾角和股骨前傾角可能和髖部骨折類型有一定的關(guān)系。同時(shí)他們提出股骨頸長(zhǎng)度以及年齡性別和髖部骨折類型沒(méi)有相關(guān)性。但具體的機(jī)制尚不明確。Wang et al.[6]等人研究發(fā)現(xiàn)可能側(cè)方摔倒的暴力以及更長(zhǎng)的股骨移動(dòng)力臂是導(dǎo)致髖部骨折的原因。髖部骨折組和正常對(duì)照組之間的骨密度,髖部軸線長(zhǎng)度,股骨頸干角這幾個(gè)股骨近端幾何形態(tài)參數(shù)之間并無(wú)統(tǒng)計(jì)學(xué)差異。僅僅是股骨移動(dòng)力臂和女性髖部骨折發(fā)生的風(fēng)險(xiǎn)有關(guān)系,所以最后得出結(jié)論摔倒時(shí)的移動(dòng)或者旋轉(zhuǎn)力臂會(huì)增加髖部骨折的風(fēng)險(xiǎn)。Nissen et al.[7-9]從基因的層面上分析股骨近端幾何形態(tài)參數(shù)對(duì)髖部骨折的風(fēng)險(xiǎn),發(fā)現(xiàn)股骨近端幾何形態(tài)參數(shù)和骨折相關(guān)的4個(gè)基因多態(tài)性并無(wú)相關(guān)關(guān)系。骨質(zhì)疏松和股骨近端幾何形態(tài)參數(shù)是兩個(gè)獨(dú)立的預(yù)測(cè)髖部骨折風(fēng)險(xiǎn)的因素,兩者之間并無(wú)相關(guān)性。同時(shí)他們的研究還發(fā)現(xiàn)不正常的股骨近端幾何形態(tài)參數(shù)可能和特納綜合癥有關(guān),而且股骨近端幾何形態(tài)參數(shù)會(huì)受到年齡和性別的影響。Pulkkinen et al.[10]等人研究發(fā)現(xiàn)了一個(gè)新的方法,即使用X線平片來(lái)預(yù)測(cè)髖部的力量加載從而對(duì)髖部骨折風(fēng)險(xiǎn)概率進(jìn)行預(yù)測(cè)。Thevenot et al.[11]同樣通過(guò)使用X線平片來(lái)對(duì)股骨近端幾何形態(tài)參數(shù)進(jìn)行研究。Dincel et al.[12]使用結(jié)合的股骨近端幾何形態(tài)參數(shù)對(duì)髖部骨折風(fēng)險(xiǎn)進(jìn)行預(yù)測(cè)研究發(fā)現(xiàn),股骨轉(zhuǎn)子間骨密度降低以及股骨近端幾何形態(tài)學(xué)參數(shù)都能提供良好的骨折風(fēng)險(xiǎn)預(yù)測(cè)。Mikhail et al.[13]等人研究發(fā)現(xiàn)股骨近端幾何形態(tài)參數(shù)的特點(diǎn)和骨頭的力學(xué)性能密切相關(guān),而且股骨近端幾何形態(tài)參數(shù)能在不結(jié)合骨密度的情況下單獨(dú)對(duì)骨折風(fēng)險(xiǎn)進(jìn)行預(yù)測(cè)。但是股骨近端幾何形態(tài)參數(shù)和骨密度相結(jié)合來(lái)預(yù)測(cè)骨折風(fēng)險(xiǎn)將更準(zhǔn)確。Cheng et al. [14]等人使用CT研究股骨骨密度以及股骨近端幾何形態(tài)參數(shù),發(fā)現(xiàn)他們和骨折風(fēng)險(xiǎn)之間存在相關(guān)關(guān)系。他們的研究發(fā)現(xiàn)股骨近端骨折病人相對(duì)于正常組有較大的股骨頸橫斷面,而且相對(duì)而言,骨密度較小。Patron et al.[15]研究了股骨近端幾何形態(tài)參數(shù)和髖部骨折的關(guān)系,發(fā)現(xiàn)股骨頸長(zhǎng)度的增加會(huì)導(dǎo)致髖部骨折的發(fā)生率增高。Gnudi etal.[16]等人通過(guò)研究股骨近端幾何形態(tài)參數(shù)和髖部骨折類型的關(guān)系,發(fā)現(xiàn)股骨近端幾何形態(tài)參數(shù)對(duì)區(qū)分絕經(jīng)后婦女的髖部骨折類型有一定的意義。他們的結(jié)果顯示股骨近端幾何形態(tài)參數(shù)結(jié)合骨密度能很好的對(duì)髖部骨折風(fēng)險(xiǎn)進(jìn)行預(yù)測(cè),而且股骨近端幾何形態(tài)參數(shù)只對(duì)股骨頸骨折有預(yù)測(cè)作用,對(duì)髖部其他地方的骨折并無(wú)預(yù)測(cè)作用,其中股骨近端幾何形態(tài)參數(shù)中的股骨頸干角是最有效的預(yù)測(cè)指標(biāo)。Crabtree et al.[17]等指出雖然之前很多研究證明股骨近端幾何形態(tài)參數(shù)和骨密度都能獨(dú)立預(yù)測(cè)骨折風(fēng)險(xiǎn),但他們的研究證實(shí)假如在使用股骨近端幾何形態(tài)參數(shù)以及骨密度的同時(shí)進(jìn)行髖部力量的分析,將更大的提高對(duì)高危女性髖部骨折的預(yù)測(cè)。Bergotet al.通過(guò)探討DXA圖像討論髖部骨折風(fēng)險(xiǎn)和股骨近端幾何形態(tài)參數(shù)之間的關(guān)系,他們發(fā)現(xiàn)單獨(dú)對(duì)股骨頸長(zhǎng)度的測(cè)量并不進(jìn)行測(cè)量骨密度,就能很好的預(yù)測(cè)骨折風(fēng)險(xiǎn),髖部骨折病人的股骨頸要明顯長(zhǎng)于對(duì)照組,而股骨頭中心到轉(zhuǎn)子間連線的垂直距離能最好的預(yù)測(cè)髖部骨折。他們提出股骨頭中心到轉(zhuǎn)子間連線的距離比髖部軸線,股骨頸軸線等對(duì)髖部骨折的預(yù)測(cè)效果更好。原因是:第一,股骨頭中心到轉(zhuǎn)子間連線的垂直距離可以不考慮患者的身高,第二,股骨頭中心到轉(zhuǎn)子間連線的垂直距離不考慮大轉(zhuǎn)子和小轉(zhuǎn)子的轉(zhuǎn)子間距,這個(gè)間距可能會(huì)因?yàn)楣敲芏鹊淖兓l(fā)生變化,第三,股骨頸長(zhǎng)度對(duì)骨密度較低的個(gè)體骨折預(yù)測(cè)準(zhǔn)確性不高,而股骨頭中心到轉(zhuǎn)子間連線的垂直距離則不受這個(gè)因素的影響。Gatti et al.[18]等人研究通過(guò)測(cè)量鏡像抗彎曲強(qiáng)度可以預(yù)測(cè)股骨頸骨折的風(fēng)險(xiǎn),他們通過(guò)此方法的測(cè)量可以間接的反應(yīng)骨密度的情況從而預(yù)測(cè)骨折發(fā)生概率,他們的研究再一次證明股骨近端幾何形態(tài)參數(shù)對(duì)髖部骨折的預(yù)測(cè)作用。Yang et al.[19]研究了中國(guó)臺(tái)灣女性的股骨近端幾何形態(tài)參數(shù),發(fā)現(xiàn)只有股骨頸長(zhǎng)度與髖部骨折風(fēng)險(xiǎn)成正相關(guān),即隨著股骨頸長(zhǎng)度的增加,髖部骨折風(fēng)險(xiǎn)增大,股骨頭直徑和股骨頸直徑對(duì)髖部骨折風(fēng)險(xiǎn)的預(yù)測(cè)沒(méi)有太大意義。Nakumara et al.[20]比較了日本人和美國(guó)白人的股骨近端幾何形態(tài)參數(shù),他們發(fā)現(xiàn)盡管日本人股骨近端骨密度明顯低于美國(guó)白人的股骨近端骨密度,但日本人髖部骨折的發(fā)生率確明顯小于美國(guó)白人,所以他們考慮可能股骨近端幾何形態(tài)參數(shù)可能對(duì)髖部骨折的發(fā)生,通過(guò)統(tǒng)計(jì)學(xué)分析,他們發(fā)現(xiàn)日本女性股骨頸較短,而且日本人的股骨頸干角也較小,其次日本人的平均身高也小于美國(guó)白人,這幾個(gè)原因可能是導(dǎo)致日本人髖部骨折發(fā)生率遠(yuǎn)小于美國(guó)白人的原因,所以預(yù)測(cè)髖部骨折風(fēng)險(xiǎn)不能僅僅依賴股骨近端骨密度,股骨近端幾何形態(tài)參數(shù)也可能發(fā)揮著至關(guān)重要的作用。Faulkner et al.[21]等人通過(guò)單獨(dú)測(cè)量股骨近端幾何形態(tài)參數(shù)來(lái)預(yù)測(cè)髖部骨折,得出結(jié)論髖部軸線長(zhǎng)度能獨(dú)立預(yù)測(cè)髖部骨折的風(fēng)險(xiǎn)。隨著中國(guó)科學(xué)技術(shù)的發(fā)展,人的壽命越來(lái)越長(zhǎng),中國(guó)逐漸進(jìn)入老年化社會(huì),伴隨而來(lái)的是各種老年性疾病的產(chǎn)生,髖部骨折仍然是老年人面臨的一個(gè)主要問(wèn)題,老年髖部骨折曾一度被譽(yù)為老年人的最后一次骨折,可見(jiàn)髖部骨折對(duì)老年的生活質(zhì)量甚至生命的危險(xiǎn)都是非常大的,大量研究表明股骨近端幾何形態(tài)(如股骨前傾角、頸干角,髖部?jī)A角、偏心距股骨頭直徑、股骨頸長(zhǎng)度、股骨頸直徑等)與髖部骨折的發(fā)生有一定的關(guān)系,然而當(dāng)前并沒(méi)有人研究年齡對(duì)股骨近端參數(shù)(如股骨前傾角、頸干角,髖部?jī)A角、偏心距股骨頭直徑、股骨頸長(zhǎng)度、股骨頸直徑等)的影響。研究目的:探討年齡對(duì)股骨近端幾何學(xué)形態(tài)參數(shù)的影響。研究方法466位中國(guó)漢族的健康成人(353位男性和113位女性)的股骨近端參數(shù)(股骨前傾角、頸干角,髖部?jī)A角、偏心距股骨頭直徑、股骨頸長(zhǎng)度、股骨頸直徑)分別由三個(gè)不同的觀察者在南方醫(yī)科大學(xué)南方醫(yī)院影像科使用圖像獲取和傳輸系統(tǒng)(PACS)進(jìn)行測(cè)量。測(cè)量完后把數(shù)據(jù)按不同年齡段分為七個(gè)亞組,分別是18歲到29歲組,30歲到39歲組,40歲到49歲組,50歲到59歲組,60歲到69歲組,70歲到79歲組,大于80歲組),然后使用統(tǒng)計(jì)學(xué)軟件SPSS17.0進(jìn)行統(tǒng)計(jì)學(xué)分析,并分析1、年齡對(duì)股骨近端幾何形態(tài)的影響(不分年齡全部466例),2、年齡對(duì)不同性別股骨近端幾何形態(tài)的影響,3、年齡對(duì)不同左右側(cè)肢體股骨近端參數(shù)的影響。研究結(jié)果我們發(fā)現(xiàn)以466(男性353例,女性113例)例為整體時(shí)頸干角(P=0.000)和髖臼前傾角(P=0.000)在不同年齡組的差異有統(tǒng)計(jì)學(xué)意義,數(shù)據(jù)顯示頸干角可能隨年齡增大而減小,髖臼前傾角隨著年齡的增大而增大,然而股骨前傾角(P=0.616)、偏心距(P=0.631)、股骨頭直徑(P=0.807)、股骨頸直徑(P=0.993)以及股骨頸長(zhǎng)度(P=0.070)這5個(gè)數(shù)據(jù)各在各年齡組中的差異沒(méi)有統(tǒng)計(jì)學(xué)意義,皮爾森相關(guān)檢驗(yàn)分析提示頸干角(P=0.000)和年齡存在負(fù)相關(guān)的關(guān)系,髖臼前傾角(P=0.000)和年齡之間存在正相關(guān)的關(guān)系,性別分層分析結(jié)果顯示:男性頸干角(P=0.003)、髖臼前傾角(P=0.000)以及股骨頸長(zhǎng)度(P=0.043)這三個(gè)數(shù)據(jù)在不同年齡組中存在統(tǒng)計(jì)學(xué)差異,女性股骨前傾角(P=0.014)、髖臼前傾角(P=0.024)、股骨頸長(zhǎng)度(P=0.041)及股骨頸直徑(P=0.038)在個(gè)年齡組中存在統(tǒng)計(jì)學(xué)差異,肢體兩側(cè)的分層分析結(jié)果與整體分析的結(jié)果基本一致。結(jié)論在我們回顧的這466例中國(guó)漢族健康成年人的股骨近端參數(shù),我們的研究結(jié)果表明股骨頸干角和年齡之間可能存在負(fù)相關(guān)關(guān)系,即股骨頸干角可能隨年年增大而減小,髖臼前傾角和年齡之間存在的正相關(guān)關(guān)系,即隨著年齡的增大髖臼前傾角可能增大。此外,股骨近端幾何形態(tài)可能存在性別差異。
[Abstract]:Research background in recent years has attracted more and more attention to the prediction of the risk of fracture risk of the proximal femur. Although the research and results are not consistent, and even the opposite results appear, it may be related to the.Li et al. on the local force of the neck of the femur, which may be related to the object, the sample size, and the ground area. An analysis is made to predict fracture associated with hip osteoporosis. It is found that the geometry of the proximal femur can be used to analyze the geometries of the proximal femur. It is of great value to predict the fracture associated with the hip. However, the analysis of the geometrical parameters of the proximal femur and the analysis of the force and bone density can not be improved. A five year cohort study of the predictive probability,.Gundi et al.[1], was conducted to study the risk of femoral neck bone density and femoral neck dry angle for hip fracture in postmenopausal women. The conclusion is that women with larger neck horns have higher incidence of hip fractures than those with smaller cervical horns, and older women are relative to younger women. Women have higher risk of fracture, and there is no significant difference in the risk of hip fractures between the elderly and the young in the older and lower bone density women. They also found that the lower bone density, the longer hip axis, and the larger femur neck dry angle women, whether or without other risk factors, are also found. It is also a high risk group for hip fractures, but they also suggest that there is no significance in predicting the risk of hip fracture with the diameter of the neck of the femur. There is no statistically significant difference in the risk of fracture between the older women and the young women, except for the lower bone density and the larger neck dry angle group at the two age groups, and the other comparisons are the elderly. The risk of fracture in women was higher. They also compared the risk of fracture in postmenopausal women and the risk of fracture of women over 65 years old, and found no difference between the two. By comparison of the above data, the author concluded that the femoral neck dry angle is a prediction of the risk of fracture in the geometric parameters of the proximal femur he measured. The impact of the femoral neck dry angle on fracture risk is not affected by age and bone mineral density. A retrospective analysis of 135 patients,.Kamath et al.[2], can be used as a separate predictor of the fracture. It is found that the prediction of the acetabular obliquity for the type of fracture seems to be meaningless, but the prediction of the risk of fracture may be certain. The authors conclude that the acetabular obliquity does not predict the type of fracture in the elderly, although the acetabular obliquity may lead to the complication of the acetabular femoral impingement syndrome, and this complication can easily lead to the femoral neck fracture.Im et al.[3] and so on to study the geometrical parameters of the proximal femur in the Korean population. The results showed that in patients with intertrochanteric fractures, the patients' hip axis and the femoral neck dry angle were significantly greater than those of the normal control group. However, the length of the axis of the hip and the femoral neck dry angle in the prediction of the femoral neck fracture were not significant, that is, the hip axis of the femoral neck fracture group and the normal control group. The difference between the femoral neck dry angle is not statistically significant. In addition, the eccentricity of the patients in the femoral neck fracture group is significantly smaller than that of the normal control group. In the intertrochanteric fracture group, with the increase of the hip axis, the probability of intertrochanteric fracture of the femur will rise 1.64 times with each increase of the hip axis, and the femoral neck dry angle does not increase 1sd will lead to the femoral neck. The incidence of intertrochanteric fractures increased by 2.32 times. In patients with femoral neck fractures, each increase of 1sd will lead to a 2.03 times increase in the risk of femoral neck fracture by 2.03 times.Masako et al.[4] and others to study the Japanese women. They measured the geometrical parameters of the proximal femur by using the clinical CT to study the geometric parameters of the proximal femur. They concluded that Japanese women with femoral neck fractures had longer hip axis than normal Japanese women, while Japanese women with intertrochanteric fractures were significantly larger than those of normal Japanese women,.Frost et al.[5] and others studied the acetabular anteversion and the femur front angle to the femoral neck bone. The effect of the fracture of the acetabulum and the femur front angle may be related to the type of hip fracture. There is no correlation between the length of the neck of the femur and the sex of the hip and the type of hip fracture. However, the specific mechanism is not clear and the.Wang et al.[6] and other studies have found that the violence that can be side fall and the longer femur can be found. There is no statistical difference between the bone density of the hip fracture group and the normal control group, the length of the hip axis, the femoral neck dry angle and the geometric parameters of the proximal femur. It is only the risk of the femur movement arm and the female hip fracture, so the conclusion is concluded. The risk of hip fracture at the time of moving or rotating arms increased.Nissen et al.[7-9] from the gene level to analyze the risk of hip fracture in the proximal femur. It was found that there was no correlation between the geometric parameters of the proximal femur and the 4 genetic polymorphisms associated with the fracture. The two independent factors that predict hip fracture risk have no correlation. Their study also found that abnormal proximal femur geometric parameters may be associated with Turner syndrome, and the geometric parameters of the proximal femur were found by age and sex.Pulkkinen et al.[10] and others. A new method is to predict the hip fracture risk probability using X-ray plain film to predict the hip fracture risk probability..Thevenot et al.[11] is also used to study the geometrical parameters of the proximal femur by X-ray plain film. The risk of hip fracture is pretreated by.Dincel et al.[12] combined with the proximal femur geometry. The study found that the reduction of bone density between the femur intertrochanter and the geometric morphological parameters of the proximal femur can provide a good fracture risk prediction.Mikhail et al.[13] et al. Studies have found that the characteristics of the geometrical parameters of the proximal femur are closely related to the mechanical properties of the bone, and the geometrical parameters of the proximal femur can not be combined with the bone density. Fracture risk was predicted separately. But the combination of the proximal femoral geometry and bone density to predict the risk of fracture would be more accurate..Cheng et al. [14] and others used CT to study the femoral bone mineral density and the proximal femur geometric shape parameters, and found a correlation between the fracture risk and the fracture risk. Their findings were found to be found. The patients with proximal femoral fractures have a larger femoral neck cross section relative to the normal group, and relatively, the smaller bone density.Patron et al.[15] studies the relationship between the geometrical parameters of the proximal femur and the hip fracture. It is found that the increase of the length of the neck of the femur leads to an increase in the incidence of hip fractures by.Gnudi etal.[16] and others through the study of the femur. The relationship between the geometric shape parameters of the proximal end and the type of hip fracture found that the geometric shape parameters of the proximal femur have some significance to distinguish the type of hip fracture in postmenopausal women. Their results show that the geometric shape parameters of the proximal femur combined with the bone density can predict the risk of hip fracture well, and the geometric shape of the proximal femur. The parameters only predict the femoral neck fracture and have no predictive effect on other hip fractures. The femoral neck dry angle in the proximal femur geometric shape parameters is the most effective predictor of.Crabtree et al.[17]. Although many previous studies have proved that the morphological parameters and bone density of the proximal femur can be independently predicted. Risk reduction, but their study confirmed that the analysis of hip strength at the same time using geometric parameters and bone density of the femur would increase the prediction of hip fracture in high-risk women by.Bergotet al. to discuss the relationship between the risk of hip fracture and the geometric morphological parameters of the femoral bone by exploring the DXA image. It was found that the measurement of the length of the neck of the femur alone did not measure the bone density, and the fracture risk was well predicted. The femoral neck of the patients with hip fractures was significantly longer than that in the control group, while the vertical distance between the femoral head center and the intertrochanteric connection was the best to predict the hip fracture. The axis and the axis of the neck of the femur are better for predicting hip fractures. First, the vertical distance between the center of the femoral head and the intertrochanteric connection can not consider the patient's height. Second, the vertical distance between the center of the femoral head and the intertrochanteric connection does not consider the distance between the large rotors and the small rotators, which may be due to the bone density. Changes in degree change. Third, the length of the neck of the femur is not well predicted for the individual bone fracture with low bone density, and the vertical distance between the femoral head center and the intertrochanteric connection is not affected by this factor..Gatti et al.[18] and other studies can predict the risk of fracture of the neck of the femur by measuring the mirror anti bending strength. The measurement of this method can indirectly reflect the bone density and predict the probability of fracture occurrence. Their study once again demonstrated the predictive role of the proximal femur geometric shape parameters to the hip fracture.Yang et al.[19], which studied the geometric parameters of the proximal femur of the women in Taiwan, China, and found that only the length of the neck of the femur and the hip fracture were found. The risk is positively correlated, that is, with the increase of the length of the neck of the femur, the risk of hip fracture increases, the diameter of the femoral head and the diameter of the femoral neck have little significance for the risk of hip fracture..Nakumara et al.[20] compares the geometrical parameters of the proximal femur of the Japanese and American white femur, and they find that the proximal bone density of the femur of the Japanese femur is clear. It was significantly lower than the proximal femur density of the white femur of the United States, but the incidence of Japanese hip fractures was significantly smaller than that of white Americans, so they considered possible hip fractures in the proximal femur. By statistical analysis, they found that the Japanese femur neck was shorter and the Japanese femur neck was smaller. The average height of the Japanese is smaller than the American white, which may cause the Japanese hip fracture rate to be far less than the American whites, so the risk of hip fracture is not only dependent on the proximal femur density, and the proximal femur geometric parameters may also play a vital role in.Faulkner et al.. [21] and others predict hip fracture by measuring the geometrical parameters of the proximal femur alone, and conclude that the length of the hip axis can predict the risk of hip fracture independently. With the development of science and technology in China, the life expectancy of the hip is growing, and China has gradually entered the aging society, accompanied by the generation of various senile diseases and hip bone. Fracture is still a major problem for the elderly. Hip fracture in the elderly was once known as the last fracture of the elderly. It can be seen that hip fractures are very dangerous to the life quality and life of the elderly. A large number of studies have shown that the geometry of the proximal femur, such as the anterior femoral obliquity, the neck dry angle, the hip inclination, and the eccentricity of the femur. The diameter of the head, the length of the neck of the femur, the diameter of the neck of the femur, etc. have a certain relationship with the occurrence of hip fractures. However, no one is currently studying the influence of age on the parameters of the proximal femur (such as the femur front angle, the neck dry angle, the hip inclination, the eccentricity of the femoral head diameter, the neck length of the femur, the diameter of the femur neck, etc.). The effects of end geometry morphological parameters. Methods 466 Chinese Han healthy adults (353 male and 113 women) with proximal femur parameters (femur front angle, neck dry angle, hip inclination, eccentricity femoral head diameter, femoral neck length, femoral neck diameter) were observed by three different observers at the Southern Hospital of Southern Medical University, respectively. The Department used image acquisition and transmission system (PACS) to measure the data. After measuring, the data were divided into seven subgroups according to age groups, namely, 18 to 29 years old group.
【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:R683

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉勤,王慧娟,李秀平,吳小燕,聶小芳;中國(guó)人股骨近端參數(shù)統(tǒng)計(jì)[J];解剖與臨床;2005年01期

2 吳云剛;肖魯偉;童培建;;激素性股骨頭壞死患者股骨近端骨髓成骨活性下降的研究[J];中國(guó)中醫(yī)骨傷科雜志;2008年06期

3 張強(qiáng);王巖;陳怡婷;鄭誠(chéng)功;魏鴻文;;中國(guó)人股骨頭缺血性壞死股骨近端的形態(tài)研究[J];醫(yī)用生物力學(xué);2009年02期

4 湯世斌;;側(cè)臥位和仰臥位股骨近端腔內(nèi)釘治療股骨近端周圍骨折的體會(huì)[J];吉林醫(yī)學(xué);2010年13期

5 王子琛;張振明;王懷兵;;股骨近端角度鎖定板治療老年股骨轉(zhuǎn)子間骨折27例療效分析[J];遼寧醫(yī)學(xué)院學(xué)報(bào);2011年02期

6 孟祥杰;葛世榮;;基于逆向工程技術(shù)的人體股骨近端形態(tài)參數(shù)誤差分析[J];中國(guó)組織工程研究與臨床康復(fù);2011年35期

7 杜長(zhǎng)嶺;馬信龍;張_";馬劍雄;付鑫;盧晉;;雙側(cè)股骨近端對(duì)稱性及解剖形態(tài)的三維重建研究[J];生物醫(yī)學(xué)工程與臨床;2012年03期

8 姜軼;;股骨近端角度鎖定板治療老年股骨轉(zhuǎn)子間骨折的療效分析[J];中國(guó)醫(yī)藥指南;2012年12期

9 楊曉龍;邱瑾;張偉;聶富祥;;股骨近端解剖鎖定板治療股骨轉(zhuǎn)子間骨折54例療效觀察[J];吉林醫(yī)學(xué);2012年26期

10 龔家富;;股骨近端解剖鎖定板治療老年股骨粗隆間骨折[J];航空航天醫(yī)學(xué)雜志;2012年09期

相關(guān)會(huì)議論文 前10條

1 孫培棟;畢振宇;趙衛(wèi)東;歐陽(yáng)鈞;;股骨近端在側(cè)方跌倒中受力狀態(tài)的有限元研究[A];中國(guó)解剖學(xué)會(huì)2013年年會(huì)論文文摘匯編[C];2013年

2 劉勤;王慧娟;李秀平;聶小芳;吳小燕;;回歸分析方法在股骨近端參數(shù)測(cè)量中的運(yùn)用[A];第11屆全國(guó)中西醫(yī)結(jié)合骨傷科學(xué)術(shù)研討會(huì)論文匯編[C];2003年

3 陳成旺;溫宏;張宇;潘孝云;;年齡及性別對(duì)股骨近端解剖參數(shù)的影響及其臨床意義[A];2012年浙江省骨科學(xué)術(shù)年會(huì)論文集[C];2012年

4 張帥;張海波;段宏;閔理;張暉;屠重棋;;股骨近端骨缺損與骨折相關(guān)性的三維有限元研究[A];第20屆中國(guó)康協(xié)肢殘康復(fù)學(xué)術(shù)年會(huì)論文選集[C];2011年

5 史慶軒;胡宏偉;寧廷民;侯存強(qiáng);李慶峰;包健;;股骨近端鎖定板和防旋股骨近端髓內(nèi)釘治療老年股骨粗隆間骨折的治療比較[A];第20屆中國(guó)康協(xié)肢殘康復(fù)學(xué)術(shù)年會(huì)論文選集[C];2011年

6 王慶甫;張衛(wèi);孫綱;;股骨近端微創(chuàng)手術(shù)療法的臨床研究(附11例報(bào)告)[A];第九次全國(guó)中西醫(yī)結(jié)合創(chuàng)傷骨科學(xué)術(shù)大會(huì)論文匯編[C];2001年

7 張帥;屠重棋;段法;閔理;周勇;張樹良;姜勇;馮品;;股骨近端骨缺損與骨折相關(guān)性的有限元分析[A];第20屆中國(guó)康協(xié)肢殘康復(fù)學(xué)術(shù)年會(huì)論文選集[C];2011年

8 高均宏;朱海濤;馮健;王文躍;胡祖愉;王儉;胡江;劉洪新;;亞洲型股骨近端抗旋髓內(nèi)釘微創(chuàng)治療老年不穩(wěn)定股骨轉(zhuǎn)子間骨折[A];浙江省醫(yī)學(xué)會(huì)骨科學(xué)分會(huì)30年慶典暨2011年浙江省骨科學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2011年

9 何飛熊;王巍;謝俊;;股骨近端解剖鎖定型鋼板治療股骨近端粉碎性骨折[A];2012年浙江省骨科學(xué)術(shù)年會(huì)論文集[C];2012年

10 楊陽(yáng);馬信龍;馬劍雄;王志彬;王志鋼;馬寶意;;防腐股骨與PMMA人工股骨近端標(biāo)本的生物力學(xué)差異[A];第七屆全國(guó)創(chuàng)傷學(xué)術(shù)會(huì)議暨2009海峽兩岸創(chuàng)傷醫(yī)學(xué)論壇論文匯編[C];2009年

相關(guān)重要報(bào)紙文章 前2條

1 ;股骨近端三維幾何形態(tài)重建[N];中國(guó)醫(yī)藥報(bào);2003年

2 印高樂(lè);臺(tái)灣醫(yī)生研發(fā)出新型人工關(guān)節(jié)[N];醫(yī)藥經(jīng)濟(jì)報(bào);2002年

相關(guān)博士學(xué)位論文 前8條

1 曹振華;股骨近端形態(tài)學(xué)參數(shù)與股骨近端骨折風(fēng)險(xiǎn)的相關(guān)性及影響因素分析[D];南方醫(yī)科大學(xué);2016年

2 呂林蔚;股骨近端結(jié)構(gòu)形態(tài)對(duì)其強(qiáng)度影響的生物力學(xué)數(shù)值仿真研究[D];吉林大學(xué);2014年

3 周峰;股骨近端創(chuàng)傷的生物力學(xué)和臨床研究[D];蘇州大學(xué);2003年

4 楊沛彥;股骨近端形態(tài)與錐形柄全髖生物學(xué)固定的相關(guān)研究[D];蘇州大學(xué);2006年

5 左建林;基于三維CT掃描的股骨近端髓腔形態(tài)學(xué)及全髖股骨側(cè)假體的優(yōu)化設(shè)計(jì)研究[D];吉林大學(xué);2008年

6 張強(qiáng);中國(guó)人股骨頭缺血性壞死人群股骨近端髓腔形態(tài)研究及其人工股骨柄的研制[D];中國(guó)人民解放軍軍醫(yī)進(jìn)修學(xué)院;2009年

7 趙繼軍;高壓氧促進(jìn)激素性股骨頭壞死多孔假體植入后骨整合的實(shí)驗(yàn)研究[D];華中科技大學(xué);2008年

8 劉宏偉;CroweⅣ型成人DDH股骨近端形態(tài)測(cè)量及(EBM RP)金屬3D打印個(gè)性化人工股骨柄假體研究[D];蘇州大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 嚴(yán)亮;成人髖關(guān)節(jié)發(fā)育不良患者股骨近端的解剖形態(tài)學(xué)特征[D];復(fù)旦大學(xué);2013年

2 張曉輝;外科手術(shù)治療股骨近端腫瘤的療效分析[D];山西醫(yī)科大學(xué);2016年

3 謝亮文;不同屬性建模方法對(duì)股骨近端有限元分析影響的研究[D];福建醫(yī)科大學(xué);2015年

4 倪新宇;股骨近端鎖定鋼板內(nèi)固定術(shù)治療股骨轉(zhuǎn)子間骨折的臨床觀察[D];遼寧中醫(yī)藥大學(xué);2016年

5 江藝;一項(xiàng)對(duì)466個(gè)中國(guó)漢族健康成人的回顧性分析:年齡對(duì)股骨近端幾何形態(tài)的影響[D];南方醫(yī)科大學(xué);2016年

6 汪偉;正常國(guó)人股骨近端三維幾何形態(tài)測(cè)量及相關(guān)研究[D];中國(guó)人民解放軍軍醫(yī)進(jìn)修學(xué)院;2002年

7 付鑫;人股骨近端空間結(jié)構(gòu)三維重建及力學(xué)性能的三維有限元分析[D];天津醫(yī)科大學(xué);2011年

8 王磊;股骨近端內(nèi)外旋轉(zhuǎn)角度的測(cè)定研究[D];河北醫(yī)科大學(xué);2013年

9 何雙建;股骨近端鎖定鋼板和亞洲型防旋股骨近端髓內(nèi)釘治療老年股骨轉(zhuǎn)子間骨折的療效比較[D];蘇州大學(xué);2013年

10 賀強(qiáng);股骨近端解剖參數(shù)測(cè)量與股骨近端髓內(nèi)釘相關(guān)性分析[D];南華大學(xué);2013年



本文編號(hào):1957566

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/1957566.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ac013***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com