天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 醫(yī)學(xué)論文 > 外科論文 >

改良TARP技術(shù)與Goel技術(shù)治療顱底凹陷癥穩(wěn)定性的有限元分析

發(fā)布時(shí)間:2018-05-12 17:18

  本文選題:改良Goel技術(shù) + C_2椎弓根螺釘 ; 參考:《南方醫(yī)科大學(xué)》2015年碩士論文


【摘要】:背景顱底凹陷癥(Basilar invagination, BI)是一種以顱頸交界區(qū)復(fù)雜骨結(jié)構(gòu)畸形為基礎(chǔ)的神經(jīng)脊髓壓迫綜合征,其發(fā)病機(jī)制多與胚胎發(fā)育過程形成的扁平顱底、枕頸融合、Kleip-Feil畸形等有關(guān),也可能與寰樞椎失穩(wěn)后代償有關(guān),常繼發(fā)于先天性畸形、類風(fēng)濕性關(guān)節(jié)炎、甲狀旁腺功能亢進(jìn)、Paget病、成骨不全癥和佝僂病等,多表現(xiàn)為寰樞關(guān)節(jié)脫位,齒狀突向后、向上陷入枕骨大孔,壓迫腦干,引起頸痛、四肢乏力、感覺麻木等神經(jīng)癥狀。BI可分為斜坡型和齒狀突型,斜坡型BI的病理解剖特征是,齒狀突與寰椎始終保持正常解剖關(guān)系,但齒狀突跟隨寰椎及枕骨斜坡同步上移,導(dǎo)致顱底平坦,后顱窩容積減小,小腦被迫疝出枕骨大孔,從后方壓迫腦干,引起相應(yīng)的神經(jīng)癥狀,因此,斜坡型BI一般采用后顱窩減壓,擴(kuò)大后顱窩容積的方法。與斜坡型BI不同,齒狀突型BI存在寰椎脫位,并且齒狀突向后、向上壓迫延髓,因此,該型治療的關(guān)鍵是復(fù)位寰樞椎,同時(shí)解除齒狀突對(duì)延髓的壓迫。有學(xué)者采用術(shù)前長(zhǎng)時(shí)間臥床牽引或術(shù)中全麻下牽引來復(fù)位寰椎,然而,寰椎前弓和齒狀突之間以及側(cè)塊關(guān)節(jié)之間有大量瘢痕組織形成,甚至側(cè)塊關(guān)節(jié)、寰齒關(guān)節(jié)間異常骨性融合,導(dǎo)致臨床中大部分齒狀突型BI的寰樞椎脫位是難復(fù)性的,即使在全麻下大重量顱骨牽引也無法復(fù)位。目前難復(fù)性寰樞椎脫位主要有兩種治療方法,分別是國內(nèi)學(xué)者尹慶水等研制發(fā)明的經(jīng)口咽寰樞復(fù)位鋼板內(nèi)固定系統(tǒng)(transoral atlantoaxial reduction plate,TARP)和印度學(xué)者Goel最初報(bào)道的后路寰樞植入墊片聯(lián)合釘棒(或釘板)內(nèi)固定系統(tǒng)(C1 lateral mass screw+C2 pedicle screw+Cage, C1LS+C2PS+Cage)。2004年印度學(xué)者Goel最初報(bào)道采用后路切斷C2神經(jīng)節(jié)及靜脈叢,暴露并分離寰樞關(guān)節(jié),去除軟骨后植入自行設(shè)計(jì)的多孔金屬墊片,迫使齒狀突下移,最后輔以寰樞內(nèi)固定,以上治療BI的方法,我們稱之為‘'Goel技術(shù)”(Goel technique)。2013年Chandra等指出,Goel技術(shù)僅僅復(fù)位齒狀突垂直移位,并沒有復(fù)位寰椎前脫位,他們?cè)贕oel技術(shù)的基礎(chǔ)上利用植入的Cage為支點(diǎn),通過器械對(duì)萬向螺釘加壓來復(fù)位寰椎,最后輔以寰樞內(nèi)固定,以上以Cage為支點(diǎn)通過器械加壓來復(fù)位寰椎的方法,我們稱之為“改良Goel技術(shù)”(modified Goel technique)。為了減少術(shù)中椎動(dòng)脈醫(yī)源性損傷,他們采用C2雙皮質(zhì)椎板螺釘(bicortical C2 laminar screws,BC2LS)代替C2椎弓根螺釘(C2 pedicle screws, C2PS)。然而,后路C1側(cè)塊螺釘+Cage+C2雙皮質(zhì)椎板螺釘(C1LS+Cage+BC2LS)組成的釘棒系統(tǒng),其生物力學(xué)穩(wěn)定性未見相關(guān)報(bào)道。2004年尹慶水等首次報(bào)道TARP技術(shù),隨后他們應(yīng)用TARP技術(shù)成功治療大量齒狀突型BI合并難復(fù)性寰樞椎脫位的患者,并獲得良好臨床效果。TARP技術(shù)不僅能有效復(fù)位寰樞椎脫位,而且也能為寰樞固定融合提供良好的生物力學(xué)穩(wěn)定性。目前TARP內(nèi)固定已更新至第三代,第三代TAPR內(nèi)固定的主要改良之處是逆向椎弓根置釘方法以及釘板萬向?qū)с@和自鎖機(jī)制的設(shè)計(jì),從根本上確保了螺釘?shù)膱?jiān)強(qiáng)固定。TARP技術(shù)通過前路行寰樞融合,使松解、復(fù)位、減壓、固定一步完成,避免后路手術(shù)對(duì)頸后肌的破壞,然而TARP技術(shù)植入顆粒骨(或髂骨塊)存在取髂骨相關(guān)并發(fā)癥,還有植骨塌陷、吸收、移位或脫落的可能,進(jìn)而導(dǎo)致骨不連、內(nèi)固定失效或感染發(fā)生,含有植骨的Cage取代顆粒骨理論上能增加穩(wěn)定性,維持寰樞融合角度,并減少植骨塌陷、吸收、脫落等并發(fā)癥,我們將Cage聯(lián)合TARP內(nèi)固定的方法稱為“改良TARP技術(shù)’'(modified TARP technique,TARP+Cage)。目前國內(nèi)外文獻(xiàn)僅有少數(shù)關(guān)于改良TAPR技術(shù)和Goel技術(shù)的生物力學(xué)研究,未見有限元分析研究。有限元分析可定量表達(dá)頸椎運(yùn)動(dòng),是體外生物力學(xué)實(shí)驗(yàn)的一個(gè)重要補(bǔ)充,它可以克服尸體實(shí)驗(yàn)和動(dòng)物實(shí)驗(yàn)取材難、費(fèi)用高、可重復(fù)性差等缺點(diǎn)。2000年,Puttlitz等首次報(bào)道上頸椎有限元模型,并將其應(yīng)用于上頸椎類風(fēng)濕關(guān)節(jié)炎的病理學(xué)研究,此后,隨著有限元軟件和計(jì)算機(jī)科學(xué)的發(fā)展,上頸椎有限元分析已經(jīng)廣泛應(yīng)用于頸椎運(yùn)動(dòng)學(xué)研究,以及各種內(nèi)固定器械的生物力學(xué)研究。實(shí)驗(yàn)一兩種改良Goel技術(shù)治療顱底凹陷癥穩(wěn)定性的有限元分析目的應(yīng)用有限元分析評(píng)價(jià)C2雙皮質(zhì)椎板螺釘和C2椎弓根螺釘聯(lián)合關(guān)節(jié)內(nèi)Cage在寰樞固定中的生物力學(xué)差異。方法采集1名35歲正常男性上頸椎(C0-C2)CT數(shù)據(jù),通過Mimics 10.01和Abaqus6.11軟件建立C0-C2節(jié)段三維有限元完整模型(Intact)并進(jìn)行有效性驗(yàn)證。正常有限元模型包括皮質(zhì)骨、松質(zhì)骨、軟骨和上頸椎相關(guān)韌帶,模型包含的韌帶有橫韌帶、十字韌帶上下韌帶、翼狀韌帶、齒突尖韌帶、前縱韌帶、寰枕前膜、覆膜、寰枕后膜、寰樞后膜、C1-C2關(guān)節(jié)囊,由于橫韌帶呈低彈性組織且非常堅(jiān)韌,采用膜單元來模擬,其余韌帶參考相關(guān)文采用兩節(jié)點(diǎn)T3D2單元來模擬,設(shè)置為只傳導(dǎo)拉力。皮質(zhì)骨的平均厚度設(shè)為1.5mm, C1-C2的關(guān)節(jié)軟骨厚度設(shè)為3.0mm,關(guān)節(jié)軟骨接觸面之間采用滑動(dòng)接觸,摩擦系數(shù)設(shè)為0.1。皮質(zhì)骨、松質(zhì)骨、軟骨、關(guān)節(jié)囊、韌帶材料屬性根據(jù)文獻(xiàn)確定賦值。在已建立的Intact模型上,通過刪除橫韌帶模擬橫韌帶斷裂,建立上頸椎失穩(wěn)模型(Unstable),并與體外頸椎生物力學(xué)實(shí)驗(yàn)數(shù)據(jù)比對(duì)。另外,BI常合并寰枕融合,合并率達(dá)92%,因此在已建立的Unstable模型上,刪除Co-C1關(guān)節(jié)間軟骨,添加單元格模擬寰枕融合狀態(tài)。在失穩(wěn)模型上分別建立后路C1側(cè)塊螺釘+Cage+C2雙皮質(zhì)椎板螺釘組成的釘棒系統(tǒng)模型(Cl lateral mass screw+Cage+bicortical C2 laminar screw, C1LS+Cage+BC2LS),后路C1側(cè)塊螺釘+Cage+C2椎弓根螺釘組成的釘棒系統(tǒng)模型(C1 lateral mass screw+Cage+C2 pedicle screw, C1LS+Cage+C2PS)。在枕骨髁上方施加40 N軸向壓力模擬頭顱重力,同時(shí)在枕骨髁上方施加1.5 Nm力矩使模型產(chǎn)生前屈、后伸、側(cè)彎、旋轉(zhuǎn)運(yùn)動(dòng),記錄C1LS+Cage+BC2LS組及ClLS+Cage+C2PS組的應(yīng)力云圖及應(yīng)力峰值,計(jì)算C1-C2節(jié)段活動(dòng)度(range of motion, ROM)。結(jié)果本研究成功建立正常人Co-C2非線性有限元模型,模型模擬了皮質(zhì)骨、松質(zhì)骨、關(guān)節(jié)軟骨及關(guān)節(jié)囊、韌帶的三維結(jié)構(gòu),共計(jì)單元26623個(gè),節(jié)點(diǎn)26003個(gè)。Intact模型在前屈、后伸、側(cè)彎、旋轉(zhuǎn)載荷下Co-C1、C1-C2的ROM與Panjabi等體外頸椎標(biāo)本實(shí)驗(yàn)結(jié)果和Zhang等上頸椎有限元模型結(jié)果吻合,驗(yàn)證了正常模型的有效性。Li等的頸椎生物力學(xué)研究和Zhang等的上頸椎有限元分析均采用切斷橫韌帶的方法造成寰樞失穩(wěn),同樣本研究也采用刪除橫韌帶的方法模擬C1-C2失穩(wěn),本模型有限元結(jié)果表明,與Intact模型相比,Unstable模型在前屈、后伸、側(cè)彎、旋轉(zhuǎn)載荷下C1-C2的活動(dòng)度分別增加35.2%、 16.4%、4.0%、5.6%,以上結(jié)果基本和Li等的頸椎生物力學(xué)實(shí)驗(yàn)結(jié)果吻合。在任何載荷下C1LS+Cage+BC2LS組和C1LS+Cage+C2PS組的C1-C2節(jié)段ROM差異均小于0.1°,且兩組內(nèi)固定所有螺釘?shù)膽?yīng)力分布和應(yīng)力峰值無明顯差異。兩組內(nèi)固定系統(tǒng)在前屈、后伸載荷下C1螺釘比C2螺釘承受更大的應(yīng)力,尤其是后伸載荷下C1螺釘?shù)淖畲髴?yīng)力是C2螺釘?shù)?倍左右。在后伸載荷下兩組內(nèi)固定Cage內(nèi)植骨應(yīng)力最小,存在明顯應(yīng)力遮擋,尤其是C1LS+Cage+C2PS組。結(jié)論本研究建立上頸椎有限元模型,并采用兩組不同的內(nèi)固定系統(tǒng)裝配,進(jìn)行生理載荷不同運(yùn)動(dòng)狀態(tài)下的有限元分析結(jié)果表明,對(duì)于BI的治療,當(dāng)樞椎不適合置入C2椎弓根螺釘時(shí),可采用C2雙皮質(zhì)椎板螺釘替代,兩者提供的三維穩(wěn)定性相當(dāng),均有利于融合。與C2PS技術(shù)相比,BC2LS技術(shù)簡(jiǎn)單、易行,同時(shí)能有效避免椎動(dòng)脈和脊髓的損傷。目前仍需進(jìn)一步研究顱底凹陷癥患者的C2椎板影像學(xué)數(shù)據(jù),為臨床應(yīng)用C2雙皮質(zhì)椎板螺釘技術(shù)治療顱底凹陷癥提供理論依據(jù)。實(shí)驗(yàn)二改良TARP技術(shù)與Goel技術(shù)治療顱底凹陷癥穩(wěn)定性的有限元分析目的應(yīng)用有限元分析比較前路改良’TARP技術(shù)與后路Goel技術(shù)治療顱底凹陷癥的生物力學(xué)穩(wěn)定性差異。方法采集1名35歲正常男性上頸椎(C0-C2)CT數(shù)據(jù),通過Mimics 10.01和Abaqus6.11軟件建立Co-C2節(jié)段三維有限元完整模型并進(jìn)行有效性驗(yàn)證。在失穩(wěn)模型上參考TARP內(nèi)固定植入方法建立前路改良TARP內(nèi)固定模型(transoral atlantoaxial reduction plate+Cage, TARP+Cage),具體方法如下:C1逆向側(cè)塊螺釘采用單皮質(zhì)螺釘,入針點(diǎn)位于Cl側(cè)塊內(nèi)側(cè)緣向外5mm處,向外側(cè)傾斜5°-10°、向上傾斜10°-15。,確保沿著C1側(cè)塊軸進(jìn)入;C2逆向椎弓根螺釘采用雙皮質(zhì)螺釘,入針點(diǎn)位于C2上關(guān)節(jié)面內(nèi)側(cè)頂點(diǎn)下方約5mm處,向外側(cè)傾斜9.3°-28.3°、向下傾斜6.5°-2.15°,逆向沿C2椎弓根軸進(jìn)入。同樣,在失穩(wěn)模型上參考后路C1側(cè)塊螺釘和C2椎弓根螺釘植入方法構(gòu)建后路Goel內(nèi)固定模型(C1 lateral mass screw+C2 pedicle screw+Cage, C1LS+C2PS+Cage),具體方法如下:C1側(cè)塊螺釘采用雙皮質(zhì)螺釘,入針點(diǎn)位于后弓下方C1側(cè)塊中部,沿C1-2關(guān)節(jié)面向內(nèi)側(cè)傾斜5。-10。、向上傾斜10。-15°,沿著C1側(cè)塊軸進(jìn)入;C2椎弓根螺釘采用雙皮質(zhì)螺釘,遵循“高、內(nèi)”原則,入針點(diǎn)位于C2椎弓根內(nèi)側(cè),沿C1-2關(guān)節(jié)面向內(nèi)側(cè)傾斜16.5°-23.8°、向上傾斜25.3°-36.7°,沿著C2椎弓根軸進(jìn)入。在枕骨髁上方施加40 N軸向壓力模擬頭顱重力,同時(shí)在枕骨髁上方施加1.5 Nm力矩使模型產(chǎn)生前屈、后伸、側(cè)彎、旋轉(zhuǎn)運(yùn)動(dòng),記錄TARP+Cage組及C1LS+C2PS+Cage組的應(yīng)力云圖及應(yīng)力峰值,并計(jì)算C1-C2節(jié)段活動(dòng)度(range of motion, ROM)。結(jié)果與完整模型相比,兩組內(nèi)固定均能減少C1-C2節(jié)段ROM。與C1LS+C2PS+Cage組相比,TARP+Cage組的C1-C2節(jié)段ROM在后伸、側(cè)彎、旋轉(zhuǎn)載荷下分別減少44.7%、30.0%、10.5%,但在前屈載荷下ROM增加30.0%。除了在后伸載荷下TARP+Cage組C2螺釘?shù)膽?yīng)力峰值大于ClLS+C2PS+Cage組C2螺釘外,其余在前屈、后伸、側(cè)彎和旋轉(zhuǎn)載荷下TARP+Cage組C1螺釘、C2螺釘?shù)膽?yīng)力峰值均相應(yīng)的小于C1LS+C2PS+Cage組C1螺釘、C2螺釘。在前屈、后伸載荷下TARP板的應(yīng)力峰值均小于后路棒。結(jié)論本研究建立上頸椎有限元模型,并采用兩組不同的內(nèi)固定系統(tǒng)裝配,進(jìn)行生理載荷不同運(yùn)動(dòng)狀態(tài)下的有限元分析結(jié)果表明,與Goel技術(shù)相比,改良TARP技術(shù)可能在后伸、側(cè)彎、旋轉(zhuǎn)方向上具有更好的三維穩(wěn)定性,但在前屈方向的穩(wěn)定性可能不如Goel技術(shù)。與Goel技術(shù)相比,改良TARP技術(shù)不僅在載荷傳遞和應(yīng)力分布上更加合理,而且能有效減壓、復(fù)位和固定寰樞椎,同時(shí)獲得寰樞生理融合角度,進(jìn)而獲得良好遠(yuǎn)期療效,但臨床仍需要關(guān)于改良TARP技術(shù)與Goel技術(shù)的前瞻性、隨機(jī)、多中心臨床研究來明確改良TARP技術(shù)在寰樞復(fù)位、固定融合中的優(yōu)勢(shì)。
[Abstract]:Background Basilar invagination (BI) is a kind of nerve spinal cord compression syndrome based on the complex bone structure malformation in the craniocede junction area. Its pathogenesis is related to the flat skull base, occipital neck fusion, Kleip-Feil malformation, and so on. It can also be related to the decompensation of atlantoaxial instability. Chang Jifa is innate Malformation, rheumatoid arthritis, hyperparathyroidism, Paget disease, osteogenesis imperfecta and rickets, such as atlantoaxial dislocation, odontoid backwards, upwards into the occipital foramen, compression of the brain stem, cervical pain, fatigue, and numbness of the limbs,.BI can be divided into the slope and odontoid, the pathological anatomy of the ramp type BI The odontoid process and Atlas always maintain normal anatomical relationship, but the odontoid process follows the atlas and occipital slope synchronously, which leads to the flat skull base, the decrease of the volume of the posterior fossa, the cerebellum forced to herniate the occipital foramen, the brain stem from the rear, and the corresponding neurological symptoms. Therefore, the posterior fossa decompression is generally used in the slope type BI to enlarge the volume of the posterior fossa. Method. Unlike the ramp type BI, odontoid BI has atlas dislocation, and the odontoid is backward and oppresses the medulla. Therefore, the key to this type of treatment is to reset the atlantoaxial vertebrae and relieve the oppression of the odontoid in the medulla. There are a large number of scar tissue, even the lateral block joints and abnormal osseous fusion between the atlantoodontoid joints, resulting in the atlantoaxial dislocation of most odontoid BI in the clinic, which is difficult to restore, even under general anesthesia with large weight cranium traction. There are two main treatments for the difficult atlantoaxial dislocation. The method is the internal fixation system (C1 lateral mass screw+C2 pedicle screw+Cage), which was originally developed by the domestic scholar Yin Qingshui, such as the transoral atlantoaxial reduction plate, TARP, and the India scholar Goel. In the first 04 years, the India scholar Goel reported that the C2 ganglion and the venous plexus were severed by the posterior approach, exposing and separating the atlantoaxial joints, removing the cartilage and implanting self designed porous metal gaskets, forcing the odontoid process to move down, and finally supplemented with the atlantoaxial internal fixation. The above treatment for BI was called ''Goel technology' (Goel technique).2013 Chandra and so on. It is pointed out that the Goel technique only replaces the vertical displacement of the odontoid process and does not reposition the anterior atlantoaxial dislocation. On the basis of the Goel technique, they use the implanted Cage as the fulcrum to reset the atlas through the instruments to the universal screw. Finally, the atlantoaxial internal fixation is added to the atlantoaxial internal fixation, and the method of reduction of the atlas with the pressure of Cage as a fulcrum is called. "Modified Goel technology" (modified Goel technique). In order to reduce the iatrogenic injury of the vertebral artery during the operation, they used C2 double cortical laminar screws (bicortical C2 laminar screws, BC2LS) instead of C2 pedicle screws. The system, its biomechanical stability did not report the first reports of TARP technology such as.2004 Yin Qingshui, and then they successfully treated a large number of patients with odontoid BI with refractory atlantoaxial dislocation with TARP technology, and obtained good clinical effect,.TARP technology not only effectively relocated the atlantoaxial dislocation, but also can be used for the atlantoaxial fixation. It provides good biomechanical stability. At present, the internal fixation of TARP has been updated to third generations. The main improvement of the third generation of TAPR internal fixation is the reverse pedicle screw method and the design of the universal guide and self locking mechanism of the nail plate. Position, decompression, fixed one step, to avoid the damage to the posterior cervical muscles by posterior operation. However, TARP technique is implanted in the bone (or iliac bone) associated with the complications of iliac bone, and the possibility of bone graft collapse, absorption, displacement or abscission, resulting in bone nonunion, internal fixation inefficiency or infection, and the theory of Cage replacing granular bone with bone graft theory can theoretically increase With stability, maintaining the atlantoaxial fusion angle, and reducing the complications such as bone graft collapse, absorption, and abscission, we call the Cage combined TARP internal fixation method as "modified TARP technique, TARP+Cage". There are only a few biomechanical studies on improved TAPR technology and Goel technology at present, and no finite element is found. Finite element analysis can express cervical motion quantitatively. It is an important supplement to the biomechanical experiment in vitro. It can overcome the shortcomings of body experiment and animal experiment, high cost, and poor repeatability,.2000 years, Puttlitz and so on. It is the first report of the upper cervical vertebra finite element model and applies it to the disease of the upper cervical spine. Since then, with the development of finite element software and computer science, the finite element analysis of the upper cervical spine has been widely applied to the research of cervical vertebrae kinematics and the biomechanical study of various internal fixations. The finite element analysis of the one or two modified Goel techniques for the treatment of the stability of the skull base depression has been applied to the evaluation of C2 The biomechanical difference between the C2 pedicle screw and the C2 pedicle screw combined with Cage in the atlantoaxial fixation. Methods 1 35 year old male normal male upper cervical (C0-C2) CT data were collected and the C0-C2 segment three-dimensional finite element complete model (Intact) was established by Mimics 10.01 and Abaqus6.11 software, and the validity was verified. The normal finite element model included Cortical bone, cancellous bone, cartilage, and upper cervical associated ligaments. The models contain ligaments with transverse ligaments, upper and lower ligaments of cruciate ligaments, pterygal ligaments, apex ligaments, anterior longitudinal ligaments, atlantooccipital anterior membrane, membrane, atlantooccipital posterior membrane, atlantoaxial posterior membrane, C1-C2 joint sac, because the transverse ligament is low elastic tissue and very tough, the membrane unit is used to simulate the ligaments and the rest ligaments. The reference related articles were simulated with two node T3D2 unit. The average thickness of cortical bone was set to 1.5mm, the thickness of articular cartilage of C1-C2 was set to 3.0mm, sliding contact was used between the contact surfaces of articular cartilage, the coefficient of friction was set to 0.1. cortical bone, cancellous bone, soft bone, joint capsule, and ligament material attributes were determined according to the literature. On the established Intact model, the upper cervical instability model (Unstable) was established by deleting the transverse ligament to simulate the transverse ligament rupture (Unstable), and compared with the biomechanical experimental data of the external cervical spine. In addition, BI often merged with the atlantooccipital fusion, with a combined rate of 92%. Therefore, on the established Unstable model, the Co-C1 articular cartilage was deleted and the cell was added to simulate the atlas. On the instability model, the system model of the nail rod system (Cl lateral mass screw+Cage+bicortical C2 laminar screw, C1LS+Cage+BC2LS), and the screw rod system model of the screw +Cage+C2 pedicle screw of the backward C1 side block screw were established on the instability model. Dicle screw, C1LS+Cage+C2PS). Apply 40 N axial pressure in the occipital condyle to simulate head gravity, and apply 1.5 Nm torque above the occipital condyle to make the model forward flexion, extension, lateral bending, rotation movement, record the stress cloud and stress peak of group C1LS+Cage+BC2LS and ClLS+Cage+C2PS group, calculate C1-C2 segment activity (range of motion, R). OM). Results this study successfully established the Co-C2 nonlinear finite element model of normal people. The model simulated cortical bone, cancellous bone, articular cartilage and joint capsule, the three-dimensional structure of ligaments, total unit 26623, 26003.Intact models of nodes in the flexion, extension, side bend, Co-C1, C1-C2 ROM and Panjabi, and the experimental results of external cervical specimens. The results of the finite element model of the upper cervical vertebra, such as Zhang, are in agreement. The biomechanical study of the cervical vertebra and the finite element analysis of the upper cervical spine of the normal model, such as the validity of the normal model, and the finite element analysis of the upper cervical vertebra, such as the Zhang and so on, are all used to make the atlantoaxial instability with the method of cutting the transverse ligaments. The same study also uses the method of removing the transverse ligaments to simulate the instability of the C1-C2. The finite element result table of this model is also used in this study. Compared with the Intact model, the Unstable model increased by 35.2%, 16.4%, 4%, 5.6%, respectively, under the flexion, extension, lateral bending and rotation load, and the results were basically consistent with the biomechanical results of the cervical vertebra, such as Li and so on. The C1-C2 segment ROM of C1LS+Cage+BC2LS and C1LS+Cage+C2PS groups were less than 0.1 degrees under any load and two, and two There was no significant difference in stress distribution and stress peak value of all screws fixed in the group. The two groups of internal fixation systems were under the flexion of the internal fixation system and the C1 screw under the extension load was more stressed than the C2 screw, especially the maximum stress of the C1 screw under the extension load was about 2 times of the C2 screw. Under the extension load, the stress of the two internal fixation in the Cage was the smallest. There was a bright future. Explicit stress occlusion, especially in group C1LS+Cage+C2PS. Conclusion a finite element model of the upper cervical spine was established in this study, and two different internal fixation systems were used to carry out the finite element analysis of the physiological load in different motion states. The results showed that the C2 double cortex laminectomy could be used when the axis was not fit for the C2 pedicle screw for the treatment of the BI. Compared with C2PS technology, BC2LS technology is simple, easy and effective to avoid the injury of vertebral artery and spinal cord compared with C2PS technology. It is still necessary to further study the imaging data of the cranial depression patients, and to treat the skull base depression by using C2 double cortical laminar screw technique in the bed. Provide a theoretical basis for the disease. Experiment two the finite element analysis of the modified TARP technique and Goel technique in the treatment of the stability of the skull base depression. The finite element analysis was used to compare the differences of biomechanical stability between the anterior improved TARP technique and the posterior Goel technique in the treatment of the skull base depression. Methods 1 35 year old male normal men's upper cervical (C0-C2) CT data were collected. Mimics 10.01 and Abaqus6.11 software were used to establish a complete three-dimensional finite element model of Co-C2 segment and verify the validity of the model. In the instability model, a modified TARP internal fixation model (transoral atlantoaxial reduction plate+Cage, TARP+Cage) was established by using the internal fixation method of TARP internal fixation (transoral atlantoaxial reduction plate+Cage, TARP+Cage). The concrete methods are as follows: C1 reverse side block screws use the single skin. The screw point is located at the outside 5mm of the medial edge of the Cl side block, and the outward side inclines 5 degree -10 degrees to 10 [degree] -15. to ensure the entry on the C1 side block axis; C2 reverse pedicle screw adopts the double cortical screw, and the point of entry is located about 5mm below the medial apex of the joint surface on the C2, and is tilted to the outside 9.3 degrees -28.3 degrees to the outside, and down to 6.5 [degree] -2.15 degrees downward, reverse along C2. The pedicle axis enters. Similarly, the posterior Goel internal fixation model (C1 lateral mass screw+C2 pedicle screw+Cage, C1LS+C2PS+Cage) is constructed by reference to the posterior C1 lateral mass screw and C2 pedicle screw implantation on the instability model. The concrete method is as follows: the C1 lateral block screw adopts the double cortical screw and the insertion point is located at the middle of the C1 side block below the posterior bow. The -2 joint was inclined to the medial tilt 5.-10., upward inclined 10.-15 degree, along the C1 side block axis; C2 pedicle screw adopted the double cortical screw, followed the "high, internal" principle, the needle point was located on the inside of the C2 pedicle, inclined 16.5 degree -23.8 to the inside of the C1-2 joint, inclined upward 25.3 degrees, along the C2 vertebral arch axis. 40 N axial pressure was used to simulate the head gravity, and the 1.5 Nm torque was applied in the occipital condyle to make the model forward flexion, extension, lateral bending and rotation movement, record the stress cloud map and the peak stress of group TARP+Cage and C1LS+C2PS+Cage, and calculate the C1-C2 segment activity (range of motion, ROM). Compared with the complete model, the results of the two groups were all fixed. To reduce the C1-C2 segment ROM. and the C1LS+C2PS+Cage group, the C1-C2 segment ROM of the TARP+Cage group decreased by 44.7%, 30%, and 10.5% respectively under the load of back, side bending and rotation, but the stress peak of the TARP+Cage group C2 screw under the flexion load was greater than that of the ClLS+C2PS+Cage group C2 screws under the extension load, and the rest was in the forward, back, and side bending. The peak values of stress of C1 screws and C2 screws in group TARP+Cage were less than those in group C1LS+C2PS+Cage under C1 and C2 screws.

【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:R687.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前2條

1 菅鳳增;蘇春海;陳贊;吳浩;王興文;;寰枕融合后C_1側(cè)塊螺釘置入的可行性及局限性研究[J];脊柱外科雜志;2011年03期

2 尹慶水;王建華;;合并復(fù)雜顱頸交界畸形的寰樞椎脫位應(yīng)個(gè)性化治療[J];中國脊柱脊髓雜志;2012年02期

,

本文編號(hào):1879462

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/1879462.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1fe1e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com