Cx43對休克大鼠血管滲漏和血管低反應(yīng)性的調(diào)節(jié)作用及機制
本文選題:Connexin43(Cx43) + 嚴重膿毒癥; 參考:《第三軍醫(yī)大學(xué)》2015年博士論文
【摘要】:休克為戰(zhàn)創(chuàng)傷最常見的并發(fā)癥,其發(fā)生率和死亡率都很高。嚴重創(chuàng)傷/休克病人廣泛存在血管功能下降,主要包括兩個方面:一是休克后血管反應(yīng)性下降,即是全身血管對內(nèi)源性和外源性血管舒縮物質(zhì)反應(yīng)性降低或是不反應(yīng)。這種血管的低反應(yīng)性嚴重影響休克的發(fā)生發(fā)展及治療,是導(dǎo)致休克晚期血壓難以回升和致死的主要原因之一。二是休克后血管屏障功能下降,即血管滲漏,也叫血管通透性升高,特別是創(chuàng)傷失血休克繼發(fā)的嚴重膿毒癥、膿毒性休克。血管滲漏可使血管內(nèi)液體外滲,導(dǎo)致組織水腫和有效循環(huán)量的進一步下降,影響組織和器官功能,并最終發(fā)展為多器官功能障礙(MODS),其死亡率高達40-70%。目前研究證實血管低反應(yīng)性的發(fā)生機制主要有:血管平滑肌細胞膜受體失敏機制、膜超極化及我們實驗室提出的鈣失敏學(xué)說。血管滲漏的機制主要包括兩種途徑:跨內(nèi)皮細胞途徑和內(nèi)皮細胞旁途徑。這兩種途徑在休克血管滲漏中發(fā)揮著主要作用,血管內(nèi)皮生長因子(VEGF),凝血酶(thrombin),TNF-α等多種細胞因子主要也是通過這兩條通路來影響血管的屏障功能。縫隙連接是一種細胞間的重要結(jié)構(gòu),在血管中呈現(xiàn)高表達,可介導(dǎo)細胞間多種電化學(xué)信號的傳導(dǎo),參與多種血管功能的調(diào)控。Cx43是細胞間縫隙連接的主要構(gòu)成蛋白,研究發(fā)現(xiàn)Cx43在多種血管疾病中發(fā)揮重要的作用,如:動脈粥樣硬化,高血壓等。我們前期研究發(fā)現(xiàn)Cx43參與休克后血管反應(yīng)性的調(diào)控,但其機制不清。最近有研究顯示在酸吸入所導(dǎo)致的急性肺損傷中,Cx43的表達在肺血管的通透性變化中發(fā)揮重要作用,那么縫隙連接蛋白Cx43是否會參與在休克后血管滲漏的調(diào)節(jié),機制如何?目前尚不清楚。研究已證實Rho激酶信號通路和PKC信號通路在調(diào)節(jié)細胞骨架、引起細胞收縮和細胞遷移等方面發(fā)揮關(guān)鍵的作用。我們前期的研究證實Rho激酶通路和PKC信號通路在休克后血管低反應(yīng)性的調(diào)節(jié)中發(fā)揮重要的作用。另外也有研究發(fā)現(xiàn)在血管滲漏方面,Rho激酶通路也起著關(guān)鍵的作用,如Rho A/Rock通路介導(dǎo)了凝血酶引起的血管內(nèi)皮通透性的增加。研究證實骨橋蛋白可作為一種信號分子參與與血管相關(guān)的多種病理生理變化的調(diào)節(jié):如細胞粘附,血管生成和細胞遷移。例如OPN通過改變內(nèi)皮屏障功能介導(dǎo)了由VEGF誘導(dǎo)的細胞遷移。此外,OPN可激活FAK和ERK信號通路,而這些信號通路可導(dǎo)致細胞的剛度變化和細胞骨架重排。這些生理和病理事件都提示OPN可能與血管內(nèi)皮屏障功能有密切的關(guān)系,但具體的機制不清楚。那么Rho激酶通路和OPN是否參與休克后Cx43對血管滲漏和血管反應(yīng)性的調(diào)節(jié)呢,尚不清楚。據(jù)此,我們首先利用嚴重膿毒癥大鼠模型和體外LPS刺激肺靜脈血管內(nèi)皮細胞,研究了Cx43在嚴重膿毒癥血管滲漏中的作用及其與Rho激酶,PKC和OPN的關(guān)系;第二,利用大鼠出血性休克模型,以及缺血缺氧處理的血管環(huán)和血管平滑肌細胞研究了Cx43在休克血管反應(yīng)性調(diào)節(jié)中的作用及其與Rho激酶和PKC的關(guān)系。研究內(nèi)容與方法:第一部分Cx43在調(diào)節(jié)嚴重膿毒癥大鼠血管滲漏中的作用及機制。1.初步探討Cx43在嚴重膿毒癥血管滲漏中的作用:利用嚴重膿毒癥大鼠及LPS刺激的肺靜脈血管內(nèi)皮細胞(VEC),觀察血管滲漏情況和血管Cx43蛋白表達變化;利用慢病毒轉(zhuǎn)染肺靜脈血管內(nèi)皮細胞,改變Cx43的表達,測定了單層VECs的TER和對熒光白蛋白(FITC-BSA)透過率的變化。2.Rho激酶在Cx43調(diào)節(jié)血管滲漏中的作用及機制研究:利用Cx43高表達和正常的肺靜脈血管內(nèi)皮細胞,觀察Rho激酶抑制劑對Cx43調(diào)節(jié)休克血管滲漏的影響及Cx43對Rho激酶表達的影響。3.OPN/緊密連接蛋白在Cx43調(diào)節(jié)休克血管滲漏中的作用及機制研究:利用嚴重膿毒癥大鼠和LPS刺激的肺靜脈血管內(nèi)皮細胞,測定OPN,zo-1,claudin-5表達變化及血管滲漏的變化,及OPN的RNA干擾對血管滲漏及zo-1和claudin-5表達的影響;及利用Cx43轉(zhuǎn)染的肺靜脈血管內(nèi)皮細胞,觀察Cx43對OPN表達的影響及Cx43對OPN上游轉(zhuǎn)錄因子表達的影響。第二部分Cx43在調(diào)節(jié)失血性休克大鼠血管低反應(yīng)性中的作用及機制。1.Cx43在PDGF調(diào)節(jié)血管反應(yīng)性中的作用及與PKC和Rho激酶的關(guān)系:利用失血性休克大鼠及缺氧血管環(huán),觀察MEGJ阻斷劑和Cx43AODN對休克血管鈣敏感性和反應(yīng)性的影響;利用血管平滑肌細胞,觀察了Rho激酶和PKC的抑制劑在PDGF調(diào)節(jié)血管反應(yīng)性中的作用,及Cx43AODN在PDGF調(diào)節(jié)Rho激酶和PKC活性中的作用。2.Cx43在BK調(diào)節(jié)血管反應(yīng)性中的作用及機制:利用失血性休克大鼠缺氧處理的血管環(huán),觀察MEGJ阻斷劑18α-GA對血管反應(yīng)性的影響,及Rho激酶和PKC抑制劑在Cx43介導(dǎo)BK調(diào)節(jié)休克血管反應(yīng)性中的作用及機制。實驗結(jié)果第一部分Cx43對嚴重膿毒癥血管滲漏的調(diào)節(jié)作用及機制(一)Cx43在嚴重膿毒癥血管滲漏中的作用Cx43參與了嚴重膿毒癥血管血管滲漏的發(fā)生,Cx43表達變化與通透性變化呈正相關(guān),改變Cx43的表達可顯著調(diào)節(jié)血管滲漏。提示Cx43在嚴重膿毒癥血管滲漏中發(fā)揮重要的作用。(二)Rho激酶-MLC20在Cx43調(diào)節(jié)血管滲漏中的作用及機制研究LPS刺激和Cx43高表達可顯著升高白蛋白的透過率和降低TER值,改變內(nèi)皮細胞應(yīng)激纖維的形態(tài),使細胞呈現(xiàn)向中心收縮。Rho激酶抑制劑Y-27632可減輕透過率的升高和TER值的降低及抑制細胞向心收縮。LPS刺激和Cx43高表達可顯著性升高Rho激酶的表達,Cx43RNAi可降低了Rho激酶的表達。LPS刺激和Cx43高表達可顯著升高的MLC20的磷酸化水平,Rho激酶抑制劑可抑制MLC20磷酸化升高。Cx43的高表達可上調(diào)Rho激酶蛋白表達水平。提示Rho激酶-MLC20通路參與了Cx43對休克血管滲漏的調(diào)節(jié)(三)OPN/緊密連接蛋白在Cx43調(diào)節(jié)血管滲漏中的作用及機制研究嚴重膿毒癥大鼠和LPS刺激內(nèi)皮細胞后,OPN的表達顯著升高,zo-1和claudin-5的表達逐漸降低。Cx43高表達顯著性地降低了zo-1和claudin-5的表達。Cx43干擾對zo-1和claudin-5的表達沒影響,但能阻止LPS刺激引起的zo-1和claudin-5表達的下降。OPN干擾可抑制Cx43對zo-1和claudin-5表達的下調(diào)。提示,OPN介導(dǎo)了Cx43對休克血管滲漏的調(diào)節(jié)。Cx43高表達顯著性地升高了Tcf-4和β-catenin的m RNA水平及上調(diào)了OPN的表達,β-catenin和Tcf-4的RNA干擾可抑制Cx43對OPN表達的上調(diào)。證實了Cx43對OPN的調(diào)節(jié)是通過轉(zhuǎn)錄因子Tcf-4/β-catenin來實現(xiàn)的。第二部分Cx43調(diào)節(jié)失血性休克大鼠血管反應(yīng)性及其機制(一)Cx43介導(dǎo)PDGF調(diào)節(jié)血管反應(yīng)性及與PKC和Rho激酶的關(guān)系PDGF可明顯改善休克后血管的反應(yīng)性,MEGJ的阻斷劑18-GA和Cx43AODN抑制了PDGF對休克血管反應(yīng)性的改善作用。PKC抑制劑和Rho激酶抑制劑可顯著抑制PDGF對休克血管反應(yīng)性和鈣敏感性的的改善作用。PDGF可明顯升高缺氧血管中Rho激酶底物MYPT和PKC底物Peptag C1的磷酸化,Cx43AODN明顯抑制了PDGF對缺氧血管MYPT和Peptag C1的磷酸化改善作用。提示Cx43通過激活PKC和Rho激酶通路,介導(dǎo)了PDGF對休克血管反應(yīng)性的調(diào)節(jié)。(二)Cx43在BK調(diào)節(jié)血管反應(yīng)性中的作用及機制BK顯著改善休克后血管的反應(yīng)性,MEGJ阻斷劑18-GA和Cx43AODN顯著性的降低了血管對BK的反應(yīng)性。BK可磷酸化Cx43的ser368位點及激活Rho激酶,PKC-α和PKC-ε的活性,BK對休克血管的改善作用可被Rho激酶抑制劑和PKC抑制劑所阻斷。PKC和Rho激酶的激動劑可改善休克血管對BK的反應(yīng)性,這種作用可被Cx43AODN所阻斷。提示,Cx43通過其ser368位點磷酸化和PKC,Rho激酶通路,參與了BK對休克血管反應(yīng)性的調(diào)節(jié)。結(jié)論1.Cx43參與了休克后血管通透性的調(diào)節(jié),一方面Cx43通過激活Rock1-MLC20通路,使細胞骨架發(fā)生改變,細胞出現(xiàn)向心收縮,增大內(nèi)皮細胞間的縫隙;另一方面,Cx43通過轉(zhuǎn)錄因子Tcf-4/β-catenin通路,上調(diào)OPN的表達。OPN表達的上調(diào)會抑制緊密連接蛋白zo-1和claudin-5的表達,使細胞間緊密連接減少,增大通透性。2.Cx43參與了PDGF和BK對休克血管反應(yīng)性的調(diào)節(jié),通過磷酸化Cx43的ser368位點,調(diào)節(jié)Rho激酶和PKC的活性,改善休克血管的鈣敏感性和反應(yīng)性。
[Abstract]:Shock is the most common complication of war trauma, its incidence and mortality are very high. Severe trauma / shock patients have extensive vascular function decline, mainly including two aspects: one is the decrease of vascular reactivity after shock, that is, the systemic vascular reactivity to endogenous and exogenous vasomotor substances is reduced or not reacted. Low reactivity seriously affects the development and treatment of shock, which is one of the main causes of the difficult to recover and death of the blood pressure in the late shock. Two is the decrease of blood vessel barrier function after shock, that is, vascular leakage, also called blood vessel permeability, especially the severe sepsis secondary to traumatic hemorrhagic shock, septic shock. Blood vessel leakage can cause blood to cause blood. Fluid extravasation in the tube leads to a further decline in tissue edema and effective circulation, affecting the function of tissue and organs and eventually developing multiple organ dysfunction (MODS). The mortality rate is up to 40-70%.. The mechanism of vascular smooth muscle cell membrane receptor desensitization, membrane hyperpolarization and us The mechanism of calcium desensitization proposed by the laboratory. The mechanism of vascular leakage mainly consists of two pathways: the cross endothelial cell pathway and the endothelial cell side pathway. These two pathways play a major role in shock vascular leakage, and the vascular endothelial growth factor (VEGF), thrombin (thrombin), TNF- alpha and many other cytokines are mainly through these two pathways To affect the barrier function of blood vessels, gap junction is an important structure of intercellular, high expression in the blood vessels, mediating the transmission of multiple electrochemical signals between cells, and participating in the regulation of various vascular functions,.Cx43 is the main constituent of intercellular gap junction, and Cx43 plays an important role in a variety of vascular diseases. For example, atherosclerosis, hypertension, and so on. We have found that Cx43 is involved in the regulation of vascular reactivity after shock, but its mechanism is not clear. Recent studies have shown that in acute lung injury caused by acid inhalation, the expression of Cx43 plays a vital role in the permeability changes of the pulmonary vessels, and whether the gap connexin Cx43 will be involved in the acute lung injury. How is the regulation of vascular leakage after shock? It is not clear now. It has been confirmed that the Rho kinase signaling pathway and the PKC signaling pathway play a key role in regulating the cytoskeleton, causing cell contraction and cell migration. Our previous study confirmed that the Rho kinase pathway and the PKC signaling pathway were in the modulation of vascular hypo response after shock. The Rho kinase pathway also plays a key role in vascular leakage, such as the Rho A/Rock pathway that mediates the increase in vascular endothelial permeability caused by thrombin. The study confirms that osteopontin can be used as a signal molecule to regulate a variety of vascular related pathophysiological changes. Such as cell adhesion, angiogenesis and cell migration. For example, OPN mediated cell migration induced by VEGF by changing the endothelial barrier function. In addition, OPN activates the FAK and ERK signaling pathways, which can lead to cell stiffness changes and cytoskeleton rearrangement. These biological and pathological events suggest that OPN may be associated with vascular endothelial screen. There is a close relationship between the barrier function, but the specific mechanisms are not clear. Then, it is not clear whether the Rho kinase pathway and OPN are involved in the regulation of vascular leakage and vascular reactivity after shock. Accordingly, we first used the rat model of severe sepsis and the external LPS stimulation of the pulmonary venous blood tube endothelial cells to study the blood of Cx43 in severe sepsis. The role of tube leakage and its relationship with Rho kinase, PKC and OPN; second. Using rat hemorrhagic shock model, vascular rings and vascular smooth muscle cells treated by ischemia and anoxia, the role of Cx43 in the regulation of shock vascular reactivity and the relationship with Rho kinase and PKC are studied. The contents and methods of the study are: the first part of Cx43 is regulated strictly. Role and mechanism of vascular leakage in rats with severe sepsis.1. preliminary study of the role of Cx43 in vascular leakage of severe sepsis: the use of severe sepsis rats and LPS stimulated pulmonary venous endothelial cells (VEC) to observe vascular leakage and changes in the expression of vascular Cx43 protein; transfection of the pulmonary vein endothelial cells by lentivirus The expression of Cx43, the TER of single layer VECs and the changes in the transmittance of fluorescent albumin (FITC-BSA), the role and mechanism of.2.Rho kinase in Cx43 regulation of vascular leakage: the effect of Cx43 high expression and normal pulmonary vein endothelial cells, the effect of Rho kinase inhibitor on the regulation of the leakage of shock vessels by Cx43 and Cx43 to Rho kinase Effect and mechanism of.3.OPN/ close connexin in Cx43 regulation of shock vascular leakage: the use of severe sepsis rats and LPS stimulated pulmonary venous endothelial cells to determine the changes of OPN, ZO-1, claudin-5 expression and vascular leakage, and the effect of RNA interference on vascular leakage and expression of ZO-1 and claudin-5 in OPN; and The effects of Cx43 on the expression of OPN and the effect of Cx43 on the expression of transcription factors in the upstream of OPN were observed by Cx43 transfected vascular endothelial cells. Second the role of Cx43 in regulating vascular hyporesponsiveness in rats with hemorrhagic shock and the mechanism of.1.Cx43 in regulating vascular reactivity by PDGF and the relationship with PKC and Rho kinase The effects of MEGJ blockers and Cx43AODN on the calcium sensitivity and reactivity of shock vessels were observed and the effects of Rho kinase and PKC inhibitors on PDGF regulation of vascular reactivity were observed with vascular smooth muscle cells, and the role of Cx43AODN in PDGF regulation of Rho kinase and PKC activity was observed in BK regulating blood. The role and mechanism of tube responsiveness: the effect of MEGJ blocker 18 alpha -GA on vascular reactivity and the role and mechanism of Rho kinase and PKC inhibitor in regulating the reactivity of shock vessels by Cx43 mediated BK in hemorrhagic shock rats, and the regulation of Cx43 on vascular leakage of severe sepsis in the first part of the experiment Role and mechanism (1) the role of Cx43 in severe sepsis vascular leakage Cx43 participates in the occurrence of vascular leakage in severe sepsis. The change of Cx43 expression is positively correlated with the change of permeability, and the expression of Cx43 can significantly regulate vascular leakage. It suggests that Cx43 plays an important role in the leakage of severe sepsis blood tube. (two) Rho kinase -MLC 20 the role and mechanism of Cx43 in regulating vascular leakage, LPS stimulation and high expression of Cx43 can significantly increase the transmittance of albumin and reduce the value of TER, change the morphology of stress fibers in endothelial cells, and make the cells present a central contraction of.Rho kinase inhibitor Y-27632 to reduce the rise of the transmittance and decrease the TER value and inhibit the centripetal contraction of the cells. .LPS stimulation and high expression of Cx43 can significantly increase the expression of Rho kinase, and Cx43RNAi can reduce the phosphorylation level of Rho kinase expression.LPS stimulation and Cx43 high expression of MLC20. Rho kinase inhibitors can inhibit the high expression of.Cx43 phosphorylation and up regulation of the expression of Rho kinase protein. The effect of Cx43 on shock vascular leakage (three) the role and mechanism of OPN/ tight connexin in Cx43 regulation of vascular leakage, the expression of OPN was significantly increased after severe sepsis rats and LPS stimulation of endothelial cells. The expression of ZO-1 and claudin-5 gradually reduced the high expression of.Cx43 and reduced the.Cx43 expression of ZO-1 and claudin-5. Interference has no effect on the expression of ZO-1 and claudin-5, but the decrease of.OPN interference from the expression of ZO-1 and claudin-5 induced by LPS stimulation inhibits the downregulation of ZO-1 and claudin-5 expression by Cx43. It suggests that OPN mediated Cx43 on shock vascular leakage. The expression of RNA in beta -catenin and Tcf-4 inhibits the up regulation of Cx43 on OPN expression. It is confirmed that the regulation of Cx43 to OPN is realized through the transcription factor Tcf-4/ beta -catenin. Second part Cx43 regulates the vascular reactivity and its mechanism in hemorrhagic shock rats. Significantly improved vascular reactivity after shock, MEGJ blockers 18-GA and Cx43AODN inhibit the improvement of PDGF to shock vascular reactivity,.PKC inhibitors and Rho kinase inhibitors can significantly inhibit the improvement of PDGF on shock vascular reactivity and calcium sensitivity..PDGF can significantly increase the MYPT and PKC of Rho kinase substrate in anoxic blood vessels The phosphorylation of substrate Peptag C1, Cx43AODN significantly inhibits the effect of PDGF on the phosphorylation of MYPT and Peptag C1 in anoxic blood vessels. It is suggested that Cx43 is mediated by the activation of PKC and Rho kinase pathway, which mediates the regulation of PDGF on the reactivity of the shock vessels. (two) the role of Cx43 in regulating vascular reactivity and the mechanism of angiogenesis significantly improve the reactivity of blood vessels after shock. MEGJ blockers, 18-GA and Cx43AODN, significantly reduced the ser368 site of the vascular reactive.BK phosphorylated Cx43 and the activation of the Rho kinase, PKC- alpha and PKC- epsilon, and the BK on the shock of the shock vessels could be modified by the inhibitors and inhibitors of the Rho kinase and the activator of the kinase to improve the response to the shock vessel. This effect can be blocked by Cx43AODN. It is suggested that Cx43 participates in the regulation of BK on the vascular reactivity of shock through its phosphorylation of ser368 site and PKC, Rho kinase pathway. Conclusion 1.Cx43 is involved in the regulation of vascular permeability after shock. On the one hand, Cx43 changes the cytoskeleton by activating the Rock1-MLC20 pathway, and the cell appears centripetal contraction. On the other hand, the up regulation of Cx43 through the transcription factor Tcf-4/ beta -catenin pathway up-regulation the expression of.OPN expression of OPN inhibits the expression of tight connexin ZO-1 and claudin-5, reduces the close connection between cells and increases the permeability.2.Cx43 involved in the regulation of PDGF and BK on the reactivity of shock vessels and through phosphorylation Cx4 3 of the ser368 locus regulates the activity of Rho kinase and PKC, and improves calcium sensitivity and responsiveness of shock vessels.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:R605.971
【相似文獻】
相關(guān)期刊論文 前10條
1 張業(yè)平,王迪潯;吸煙對肺血流動力學(xué)及肺血管反應(yīng)性的影響[J];同濟醫(yī)科大學(xué)學(xué)報;1991年04期
2 萬獻堯,畢麗巖;慢性阻塞性肺疾病患者肺血管反應(yīng)性與預(yù)后的關(guān)系[J];日本醫(yī)學(xué)介紹;1997年11期
3 趙金惠;陳宇翔;;腦血管反應(yīng)性檢測及其應(yīng)用價值[J];中國中西醫(yī)結(jié)合影像學(xué)雜志;2007年06期
4 陳孟勤,龔明萃;高血壓病的血管反應(yīng)性研究[J];生理科學(xué);1987年04期
5 王迪潯,金咸tb,王維翰,陳剛,杜云鵬,朱振漢;吸煙引起肺血管反應(yīng)性變化的影響因素——動物種屬與吸煙時間[J];中國病理生理雜志;1993年01期
6 楊艷梅;姚振威;馮曉源;;腦血管反應(yīng)性的灌注成像[J];國外醫(yī)學(xué)(臨床放射學(xué)分冊);2007年04期
7 朱慧敏;周志明;徐格林;劉新峰;;腦血管反應(yīng)性的檢測方法[J];中國卒中雜志;2009年12期
8 賈翔;王廣義;王長華;;急性血管反應(yīng)性試驗的術(shù)中護理[J];軍醫(yī)進修學(xué)院學(xué)報;2012年02期
9 蔡穎超;吳世政;;腦梗死患者腦血管反應(yīng)性的臨床評價[J];內(nèi)科急危重癥雜志;2012年01期
10 徐晨;高血鈣病人交感神經(jīng)系統(tǒng)機能與血管反應(yīng)性[J];國外醫(yī)學(xué).內(nèi)分泌學(xué)分冊;1984年02期
相關(guān)會議論文 前10條
1 李濤;朱娛;唐婧;范小青;廖自福;程鳳;劉良明;;不同年齡不同性別大鼠血管反應(yīng)性差異研究[A];第七屆全國創(chuàng)傷學(xué)術(shù)會議暨2009海峽兩岸創(chuàng)傷醫(yī)學(xué)論壇論文匯編[C];2009年
2 李濤;楊光明;徐競;朱娛;胡弋;劉尚清;肖旭東;丁曉莉;劉良明;;不同性別與年齡在失血性休克后血管反應(yīng)性的差異及雌激素的作用[A];中國生理學(xué)會心血管生理學(xué)術(shù)研討會論文集[C];2011年
3 肖淑萍;;阻塞性睡眠呼吸暫停低通氣綜合征患者腦血管反應(yīng)性[A];山東省2013年神經(jīng)內(nèi)科學(xué)學(xué)術(shù)會議暨中國神經(jīng)免疫大會2013論文匯編[C];2013年
4 張堅;楊明亮;馮雨桐;劉淑英;楊小杰;張靜;修瑞娟;;頸髓橫斷損傷對大鼠腸系膜微動脈血管反應(yīng)性的影響[A];中國微循環(huán)學(xué)會2014年全國學(xué)術(shù)會議大會匯編[C];2014年
5 趙克森;劉杰;趙桂玲;潘秉興;黃緒亮;趙清;闞文宏;黃巧冰;金建秋;;重癥休克血管反應(yīng)性低下的機理和治療[A];中國病理生理學(xué)會微循環(huán)專業(yè)委員會第十二屆學(xué)術(shù)大會會議指南及論文摘要集[C];2007年
6 楊光明;劉良明;;絲裂原活化蛋白激酶亞類在失血性休克后活性變化及其在血管反應(yīng)性調(diào)節(jié)中的作用[A];中國病理生理學(xué)會第九屆全國代表大會及學(xué)術(shù)會議論文摘要[C];2010年
7 楊光明;徐競;李濤;劉良明;;蛋白激酶C-ε亞型在血管加壓素改善休克動物血管反應(yīng)性和鈣敏感性中的作用[A];第七屆全國創(chuàng)傷學(xué)術(shù)會議暨2009海峽兩岸創(chuàng)傷醫(yī)學(xué)論壇論文匯編[C];2009年
8 劉良明;李濤;楊光明;徐競;周榮;明佳;張瑗;陳偉;賀教江;梁家林;朱娛;;循環(huán)休克血管低反應(yīng)性發(fā)生機制研究現(xiàn)狀與未來[A];中國生理學(xué)會心血管生理學(xué)術(shù)研討會論文集[C];2011年
9 李濤;朱娛;唐婧;范小青;廖自福;陳鳳;劉良明;;PDGF對休克血管反應(yīng)性的調(diào)節(jié)作用及初步機制探討[A];第七屆全國創(chuàng)傷學(xué)術(shù)會議暨2009海峽兩岸創(chuàng)傷醫(yī)學(xué)論壇論文匯編[C];2009年
10 李濤;朱娛;唐婧;范小青;廖自福;陳鳳;;PDGF對休克血管反應(yīng)性的調(diào)節(jié)作用及初步機制探討[A];中國病理生理學(xué)會第九屆全國代表大會及學(xué)術(shù)會議論文摘要[C];2010年
相關(guān)重要報紙文章 前1條
1 王昌文 馮琳;我國創(chuàng)(燒)傷治療研究獲重大突破[N];中國醫(yī)藥報;2004年
相關(guān)博士學(xué)位論文 前5條
1 張杰;Cx43對休克大鼠血管滲漏和血管低反應(yīng)性的調(diào)節(jié)作用及機制[D];第三軍醫(yī)大學(xué);2015年
2 明佳;肌內(nèi)皮縫隙連接在休克后血管低反應(yīng)性中的調(diào)節(jié)作用及其機制[D];第三軍醫(yī)大學(xué);2007年
3 潘秉興;平滑肌細胞膜超極化在過氧亞硝酸陰離子降低大鼠血管反應(yīng)性中的作用[D];第一軍醫(yī)大學(xué);2004年
4 李濤;Rho激酶對休克血管反應(yīng)性的調(diào)節(jié)作用及其機制[D];第三軍醫(yī)大學(xué);2006年
5 徐競;參與休克血管反應(yīng)性和鈣敏感性調(diào)控的PKC亞型及其MLC_(20)磷酸化調(diào)控機制[D];第三軍醫(yī)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 王旭青;白藜蘆醇對脂多糖攻擊小鼠血管反應(yīng)性的作用與機制[D];河北北方學(xué)院;2015年
2 張瑗;缺氧誘導(dǎo)因子1α對休克血管反應(yīng)性的調(diào)控作用及其機制[D];第三軍醫(yī)大學(xué);2007年
3 李麗;飛行員腦血管反應(yīng)性影響因素的分析[D];安徽醫(yī)科大學(xué);2012年
4 趙金惠;糖尿病合并高血壓患者腦血管反應(yīng)性的超聲評價[D];大連醫(yī)科大學(xué);2005年
5 陳斌娟;頸動脈狹窄血管反應(yīng)性與中樞性眩暈的研究[D];蘭州大學(xué);2007年
6 邢邯英;褪黑素對內(nèi)毒素血癥大鼠血管反應(yīng)性改變的影響及其機制探討[D];河北醫(yī)科大學(xué);2002年
7 蔡穎超;高原前循環(huán)狹窄患者腦血管反應(yīng)性研究[D];青海大學(xué);2012年
8 郭素彥;腦梗塞患者血漿ADMA水平與腦血管反應(yīng)性的相關(guān)性研究[D];蘇州大學(xué);2010年
9 于勝泳;鈣增敏劑MCI-154對動脈粥樣硬化大鼠血管反應(yīng)性影響的研究[D];山西醫(yī)科大學(xué);2008年
10 高雁青;不同海拔地區(qū)藏、漢族健康人腦血管反應(yīng)性及血漿NO、eNOS含量的研究[D];青海大學(xué);2013年
,本文編號:1820993
本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/1820993.html