紅外光譜成像結合化學計量學對關節(jié)軟骨的分類識別
發(fā)布時間:2018-04-17 04:19
本文選題:關節(jié)軟骨 + 骨關節(jié)炎 ; 參考:《南京航空航天大學》2017年碩士論文
【摘要】:關節(jié)軟骨覆蓋于骨表面,是骨關節(jié)的重要組成部分之一,主要作用是在關節(jié)活動中承受力學負荷,緩沖震動以及減少摩擦。關節(jié)軟骨基質(zhì)的主要成分為膠原蛋白和蛋白多糖。年齡、肥胖、外傷等因素會造成關節(jié)軟骨的變性甚至損傷,進一步發(fā)展可能會導致骨關節(jié)炎的發(fā)生。由于在骨關節(jié)炎早期,關節(jié)軟骨僅發(fā)生組分含量和結構的變化,并不出現(xiàn)形態(tài)學上的改變。這使得目前常用的臨床診斷技術無法有效地識別早期骨關節(jié)炎。本文嘗試采用FTIRI技術結合不同的化學計量學識別算法對正常和病變關節(jié)軟骨進行分類研究,尋找最優(yōu)的判別模型,期望為早期骨關節(jié)炎的準確診斷開辟新的途徑。其中,傅里葉變換紅光譜成像技術(FTIRI)可以同時獲得被測樣品的紅外光譜信息及其形貌特征,具備豐富的組分種類和含量信息;瘜W計量學方法可以有效地提取光譜中的與相關化學組分對應的特征信息,常用于光譜的定量和定性分析。其在物質(zhì)的定量分析和光譜分類識別等相關領域有著廣泛的應用。本研究采集了關節(jié)軟骨的正常樣本、8周病變樣本以及2年病變樣本的光譜數(shù)據(jù),利用主成分分析(PCA)算法、Fisher判別(FDA)算法、偏最小二乘判別(PLS-DA)算法以及支持向量機判別(SVM-DA)算法分別構建判別模型,實現(xiàn)對正常和病變光譜的分類識別。主要內(nèi)容為:(1)基于光譜預處理方法,利用PLS-DA算法對正常和2年病變組光譜進行分類識別,預測準確率為96.92%。(2)利用PCA結合FDA算法分別對未經(jīng)預處理的正常軟骨光譜和8周病變光譜以及2年病變光譜進行分類識別。其中,正常vs 8周病變組的預測準確率為89.23%,正常vs 2年病變組的預測準確率為92.31%。(3)利用SVM-DA算法實現(xiàn)正常、8周病變和2年病變光譜的多類判別,整體預測準確率為90.33%。當利用SVM-DA實現(xiàn)正常vs 2年病變組光譜的二類判別時,其預測準確率為97.7%。比較3種模型的分類結果發(fā)現(xiàn),上述3種模型均可以有效地實現(xiàn)對正常和病變光譜的分類識別。其中,SVM-DA算法具有最佳的分類效果且可以有效地實現(xiàn)關節(jié)軟骨光譜的多類識別,有潛力發(fā)展成為一種新型的早期骨關節(jié)炎診斷方法,并為進一步的研究提供理論依據(jù)和數(shù)據(jù)支持。
[Abstract]:Articular cartilage, which covers the surface of bone, is one of the important components of bone joint. The main function of articular cartilage is to withstand load, cushion vibration and reduce friction in joint motion.The main components of articular cartilage matrix are collagen and proteoglycan.Age, obesity, trauma and other factors may cause degeneration or injury of articular cartilage, and further development may lead to osteoarthritis.In the early stage of osteoarthritis, the articular cartilage changes only in composition and structure, but not in morphology.This makes the current commonly used clinical diagnosis technology can not effectively identify early osteoarthritis.This paper attempts to study the classification of normal and diseased articular cartilage by using FTIRI technique and different chemometrics recognition algorithms to find the best discriminant model and to open up a new way for the accurate diagnosis of early osteoarthritis.Fourier transform red spectral imaging (FTIRI) can simultaneously obtain the infrared spectrum information and its morphological characteristics of the samples, and it has abundant information on the composition and content of the samples.The chemometrics method can effectively extract the characteristic information corresponding to the related chemical components in the spectrum, which is often used for quantitative and qualitative analysis of the spectrum.It is widely used in quantitative analysis of matter and spectral classification and recognition.In this study, we collected the spectral data of normal articular cartilage samples from 8 weeks and 2 years of pathological changes, and used principal component analysis (PCA) algorithm and Fisher discriminant FDA-algorithm.Partial least square discriminant (PLS-DA) algorithm and support vector machine discriminant (SVM-DA) algorithm are used to construct discriminant models respectively to realize the classification and recognition of normal and pathological spectrum.The main content is: (1) based on the spectral pretreatment method, PLS-DA algorithm is used to classify and recognize the spectrum of normal and 2-year lesion groups.The prediction accuracy is 96.92 / 2) the unpretreated normal cartilage spectrum, the 8-week lesion spectrum and the 2-year lesion spectrum are classified and identified by PCA and FDA algorithm, respectively.Among them, the prediction accuracy of normal vs 8-week lesion group was 89.23 and that of normal vs 2-year lesion group was 92.31 and 92.31.The SVM-DA algorithm was used to distinguish the spectrum of normal 8-week lesion and 2-year lesion, and the overall prediction accuracy was 90.33%.When SVM-DA was used to distinguish the spectrum of normal vs 2 year lesion group, the prediction accuracy was 97. 7%.By comparing the classification results of the three models, it is found that the above three models can effectively realize the classification and recognition of normal and pathological spectrum.SVM-DA algorithm has the best classification effect and can effectively realize multi-class recognition of articular cartilage spectrum. It has the potential to develop into a new diagnosis method of early osteoarthritis and provide theoretical basis and data support for further research.
【學位授予單位】:南京航空航天大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN219;R68
【參考文獻】
相關期刊論文 前4條
1 王建平;符龍;張雁儒;梁軍;張盼盼;王猛;;正常膝關節(jié)和人工膝關節(jié)髕股關節(jié)高屈曲運動特性及其比較分析[J];中國臨床解剖學雜志;2016年04期
2 徐衛(wèi)東;李全;;骨關節(jié)炎的基礎和臨床研究熱點[J];中華關節(jié)外科雜志(電子版);2016年03期
3 葉臻;李民;陳定家;;骨關節(jié)炎軟骨下骨的微結構改變[J];中國骨質(zhì)疏松雜志;2016年05期
4 王繼魯;;CT診斷膝關節(jié)骨關節(jié)炎的臨床表現(xiàn)[J];世界最新醫(yī)學信息文摘;2016年13期
,本文編號:1762034
本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/1762034.html
最近更新
教材專著