側(cè)腦室三角區(qū)顯微解剖及經(jīng)后縱裂對側(cè)楔前葉入路對對側(cè)側(cè)腦室三角區(qū)顯露的研究
發(fā)布時間:2018-03-17 17:05
本文選題:側(cè)腦室三角區(qū) 切入點:視輻射纖維 出處:《蘭州大學》2015年碩士論文 論文類型:學位論文
【摘要】:第一章相關(guān)重要結(jié)構(gòu)的顯微解剖研究目的:側(cè)腦室三角區(qū)為側(cè)腦室體部、顳角及枕角相延續(xù)的部分,解剖位置特殊。詳細了解側(cè)腦室三角區(qū)各個壁的組成、毗鄰的視輻射纖維的走形、供血動脈、深靜脈、脈絡膜裂房部等重要結(jié)構(gòu)的解剖特點及楔前葉的位置、形狀、大小可以確定楔前葉造瘺的安全范圍,為模擬經(jīng)后縱裂對側(cè)楔前葉入路提供必要的解剖學依據(jù)。方法:本次研究對6例4%多聚甲醛固定后的成年國人帶頸尸頭標本進行血管灌注并按照Klingler技術(shù)反復冷凍及溶解5個周期,取1例(2側(cè))尸頭標本取出腦組織后解剖觀察視輻射纖維走行及側(cè)腦室三角區(qū)各個壁的組成。取1例(2側(cè))尸頭標本取出腦組織后觀察楔前葉的位置、形狀、大小、從而確定楔前葉造瘺的安全范圍,為模擬經(jīng)后縱裂對側(cè)楔前葉入路提供必要的解剖學依據(jù)。取另外4例(8側(cè))尸頭標本模擬經(jīng)后縱裂對側(cè)楔前葉入路,模擬手術(shù)入路之后取出腦組織進一步對其他重要解剖結(jié)構(gòu)進行觀察及測量。結(jié)果:通過上述解剖學研究可以詳細了解側(cè)腦室三角區(qū)毗鄰的視輻射纖維的走形、三角區(qū)各個壁的組成、供血動脈、深靜脈、脈絡膜裂房部及楔前葉等重要結(jié)構(gòu)的解剖特點并獲得相關(guān)測量數(shù)據(jù)。經(jīng)楔前葉造瘺可以進入側(cè)腦室三角區(qū)及部分顳角。結(jié)論:詳細了解上述重要解剖結(jié)構(gòu)可以為模擬經(jīng)后縱裂對側(cè)楔前葉入路提供必要的解剖學依據(jù)。第二章經(jīng)后縱裂對側(cè)楔前葉入路的研究目的:側(cè)腦室三角區(qū)部位的腫瘤多為良性,手術(shù)是其最佳的治療手段。目前得到廣泛應用的手術(shù)入路均有其不足之處,其中最主要的風險就是視輻射和優(yōu)勢半球側(cè)語言中樞的損傷。本次研究通過尸頭解剖模擬側(cè)腦室三角區(qū)的對側(cè)入路,該入路經(jīng)對側(cè)進入側(cè)腦室三角區(qū)從而避免了視輻射纖維的損傷,我們稱之為經(jīng)后縱裂對側(cè)楔前葉入路。方法:本次實驗選取4例(8側(cè))成人尸頭標本模擬經(jīng)后縱裂對側(cè)楔前葉入路,灌注后俯臥位固定尸頭標本,病變對側(cè)中線旁頂枕開顱,切開部分大腦鐮及對側(cè)楔前葉進入對側(cè)側(cè)腦室三角區(qū),觀察該手術(shù)入路的顯露范圍。結(jié)果:4例(8側(cè))頭顱標本均可以順利的采用經(jīng)后縱裂對側(cè)楔前葉入路進入側(cè)腦室三角區(qū)而避免視輻射纖維的損傷。入路途經(jīng)的重要解剖標志主要包括胼胝體壓部、對側(cè)距狀溝、頂枕溝和頂枕動脈。該入路對丘腦枕、穹窿腳、側(cè)副隆起、肼胝體毯部、胼胝體隆起、禽距、房內(nèi)側(cè)靜脈、脈絡膜后動脈、三角區(qū)脈絡叢(脈絡球)及側(cè)副三角顯露良好。向前最遠可以顯露丘腦枕、向后最遠可以顯露胼胝體毯部,向上最遠可以顯露胼胝體隆起、向下最遠可以顯露側(cè)副三角。結(jié)論:經(jīng)后縱裂對側(cè)楔前葉入路可以相對安全的進入側(cè)腦室三角區(qū),并且避免了視輻射纖維的損傷。
[Abstract]:Chapter 1 microanatomical study on the related important structures objective: the lateral ventricular trigonometry is the part of the lateral ventricle body, temporal horn and occipital horn, and its anatomical position is special. The anatomic characteristics of the adjacent optic radiation fibers, the anatomical characteristics of the important structures, such as the feeding artery, deep vein, choroidal fissure chamber, and the position, shape and size of the prewedge lobe, can determine the safe range of the prewedge lobectomy. To provide the necessary anatomical basis for simulating the antegrade approach to the contralateral wedge of the posterior longitudinal fissure. Methods: in this study, 6 Chinese adult cadaveric head specimens fixed with 4% paraformaldehyde were perfused with blood vessels and frozen repeatedly according to Klingler technique. And dissolve in 5 cycles, One cadaveric head was taken out and the brain tissue was dissected to observe the composition of the optic radiation fibers and the walls of the trigonometry region of the lateral ventricle. The position, shape and size of the anterior cuneate lobe were observed after the cadaveric head specimens were removed from the brain tissue in 1 case and 2 sides of the cadaveric head. Thus, the safe range of anterior cunedochostomy was determined, which provided the necessary anatomical basis for simulating the antegrade approach of posterior longitudinal fissure. Other important anatomical structures were further observed and measured. Results: the anatomic study can be used to understand in detail the shape of the optic radiation fibers adjacent to the trigonometry of the lateral ventricle. The composition of the various walls of the triangle, the supplying artery, the deep vein, Anatomical characteristics of the choroidal fissure atrium and anterior cuneate lobe and other important structures were obtained and relevant measurement data were obtained. Trans-cuneate lobectomy can enter the trigonometry of lateral ventricle and part of the temporal horn. Conclusion: detailed understanding of the above important anatomical structures can be as follows:. The anatomic basis for simulating the posterior longitudinal fissure approach to the contralateral cuneate anterior lobe. Chapter 2 study on the anterolateral anterior cuneiform approach through the posterior longitudinal fissure objective: tumors in the trigonometric region of the lateral ventricle are mostly benign. Surgery is the best method of treatment. At present, the widely used surgical approach has its shortcomings. The main risk is the injury of visual radiation and dominant hemispheric language center. In this study, the contralateral approach of lateral ventricular trigonometry was simulated by dissecting the cadaveric head. This approach enters the trigonometry of the lateral ventricle through the opposite side, thus avoiding damage to the visual radiation fibers. Methods: 4 adult cadaveric head specimens were selected to simulate the posterior longitudinal fissure contralateral anterior cuneiform approach. The cadaver head was fixed in the prone position after perfusion, and the parietal parietal occipital craniotomy was performed on the contralateral midline. Incision of part of the falx cerebri and the anterior lobe of the contralateral wedge into the contralateral ventricular trigonometry, Results all the cranial specimens of 4 cases (8 sides) could smoothly enter the trigonometry of lateral ventricle via posterior longitudinal fissure and anterior wedge approach to avoid the injury of visual radiation fiber. The important way of the approach was to avoid the injury of the optic radiation fiber by using the anterior lobe approach of the posterior longitudinal fissure to avoid the injury of the optic radiation fiber. The anatomical signs mainly include the corpus callosum, Contralateral talus sulcus, parietal sulcus and parietal artery. This approach is applied to thalamus occipital, fornix foot, lateral accessory eminence, callosal blanket, callosal eminence, avian distance, medial atrium vein, posterior choroidal artery, medial atrium vein, posterior choroidal artery. The choroid plexus (choroid plexus) and the lateral accessory triangle of the trigonometry are well exposed. The thalamic occipitals can be exposed as far as forward, the callosal carpet as far back as possible, and the corpus callosum protuberance as far up as possible. Conclusion: the anterior lobe approach of the contralateral wedge of posterior longitudinal fissure can enter the triangle of lateral ventricle relatively safely and avoid the injury of visual radiation fiber.
【學位授予單位】:蘭州大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:R651.1
【相似文獻】
相關(guān)期刊論文 前6條
1 安德魯·紐伯格;馬克·瓦德門;;愿你哈欠連天[J];現(xiàn)代婦女;2013年03期
2 張繼;;遺忘型輕度認知功能損害:后扣帶回皮質(zhì)與相鄰楔前葉對解決問題任務反應的功能MRI研究[J];國際醫(yī)學放射學雜志;2012年01期
3 邵輝麗;杜小霞;;楔前葉/后扣帶皮層在靜息態(tài)功能網(wǎng)絡中起關(guān)鍵節(jié)點作用的研究進展[J];磁共振成像;2011年03期
4 童丹丹;代天恩;李文福;邱江;張慶林;;科學發(fā)明情境中問題提出的fMRI研究[J];心理學報;2013年07期
5 張曄;馮士剛;馮洪波;董峰;唐一源;;負激活腦區(qū)相互作用的任務相關(guān)性[J];科學通報;2008年07期
6 沈汪兵;羅勁;劉昌;袁媛;;頓悟腦的10年:人類頓悟腦機制研究進展[J];科學通報;2012年21期
相關(guān)碩士學位論文 前1條
1 秦振偉;側(cè)腦室三角區(qū)顯微解剖及經(jīng)后縱裂對側(cè)楔前葉入路對對側(cè)側(cè)腦室三角區(qū)顯露的研究[D];蘭州大學;2015年
,本文編號:1625658
本文鏈接:http://sikaile.net/yixuelunwen/waikelunwen/1625658.html
最近更新
教材專著