車輛碰撞行人的動(dòng)力學(xué)響應(yīng)及胸部和下肢損傷機(jī)理研究
發(fā)布時(shí)間:2021-10-05 03:08
行人是交通事故中死亡風(fēng)險(xiǎn)最高的道路使用者之一,行人保護(hù)已成為汽車設(shè)計(jì)的重要課題之一。行人頭部損傷是造成死亡的主要原因,針對(duì)行人頭部保護(hù)進(jìn)行汽車設(shè)計(jì)研究的同時(shí),行人胸部損傷數(shù)量也在逐年上升。在車輛與行人碰撞事故中,行人胸部的損傷率僅次于頭部和下肢,而致死率僅次于頭部,對(duì)受害者和社會(huì)造成了嚴(yán)重的影響。因此針對(duì)胸部損傷及防護(hù)措施的研究也突顯其急迫性。行人下肢的損傷可引發(fā)長(zhǎng)期的殘疾,給社會(huì)帶來(lái)沉重的負(fù)擔(dān),其損傷及損傷評(píng)價(jià)方法雖得到廣泛的研究并取得了一定進(jìn)展,但對(duì)于不同汽車前部結(jié)構(gòu)碰撞的損傷機(jī)理及評(píng)價(jià)方法仍需改進(jìn)。因此,探討行人胸部和下肢損傷機(jī)理、損傷防護(hù)技術(shù)和損傷評(píng)價(jià)方法對(duì)改進(jìn)汽車結(jié)構(gòu)碰撞安全設(shè)計(jì),具有重要的社會(huì)現(xiàn)實(shí)意義。本文簡(jiǎn)要介紹了行人交通事故現(xiàn)狀,行人損傷生物力學(xué)研究現(xiàn)狀,總結(jié)了行人頭部,胸部及下肢的主要解剖學(xué)結(jié)構(gòu)及主要損傷形式及損傷機(jī)理,簡(jiǎn)單歸納了行人保護(hù)的研究方法。根據(jù)車輛與行人事故碰撞中常致人體損傷的車輛類型,建立了不同前部結(jié)構(gòu)的中型轎車(medium car)、微型車(minicar)、廂式車(one-box type vehicle)及運(yùn)動(dòng)型轎車(SUV)的有限元模型。其中,中...
【文章來(lái)源】:湖南大學(xué)湖南省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:152 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Abstract
Content
Abbreviations
Chapter 1 Introduction
1.1 Background
1.2 Epidemiology of a pedestrian accident
1.2.1 Overview of pedestrian accidents
1.2.2 Distribution of pedestrian injuries
1.2.3 Vehicle size and type
1.2.4 Impact speed
1.3 Pedestrian injury biomechanics
1.3.1 Head injury biomechanics
1.3.2 Thorax injury biomechanics
1.3.3 Lower limb injury biomechanics
1.4 Injury assessment techniques
1.4.1 Pedestrian physical dummy test
1.4.2 Mathematical models
1.5 Pedestrian safety countermeasures
1.5.1 Passive safety systems
1.5.2 Active safety systems
1.6 Aim of the present study
Chapter 2 Mathematical Theories and Development of Vehicle Finite Element Models
2.1 Introduction
2.2 Mathematical simulation theory
2.2.1 Multi-body system(MBS)dynamics
2.2.2 Explicit Finite Element Method
2.3 Vehicle FE model development
2.4 Results of the vehicle FE model validation
2.4.1 Validation of the minicar FE model
2.4.2 Validation of the one-box vehicle FE model
2.4.3 Validation of the SUV FE model
2.5 Summary
Chapter 3 Pedestrian Kinematic Behavior and Head Injuries
3.1 Introduction
3.2 Methodology
3.3 Pedestrian kinematic behavior
3.3.1 Globe kinematic behavior
3.3.2 Influence of car's front shape on pedestrian trajectories
3.3.3 Influence of vehicle impact velocity on pedestrian trajectories
3.4 Head impact conditions
3.4.1 Wrap around distance (WAD)
3.4.2 Head impact velocity
3.4.3 Head impact angle
3.5 Influence of vehicle impact speed on head injury risk
3.6 Discussion
3.7 Summary
Chapter 4 Finite Element Analysis of Chest Injury Mechanism and Injury Risk
4.1 Introduction
4.2 Methodology
4.3 Results
4.3.1 Chest impact conditions
4.3.2 Chest deformation mode
4.4 Influence of impact velocity on chest injury risk
4.5 Discussion
4.6 Summary
Chapter 5 Assessment of Chest Injuries Using Subsystem Impact Test
5.1 Introduction
5.2 Chest effective impact mass
5.2.1 Theory and method
5.2.2 Chest effective mass from MBS simulations
5.2.3 Chest effective mass from FE simulations
5.2.4 Chest effective mass
5.3 Upper legform impact test and force deformation characteristics
5.3.1 Upper legform certification test
5.3.2 Upper legform impact simulations and test
5.3.3 Force deformation characteristics
5.4 Headform impact test and force deformation characteristics
5.4.1 Set-up of the simulation
5.4.2 The result of the headform impact test
5.4.3 Force deformation characteristics
5.4.4 The headform acceleration and rib deflection
5.5 Comparsion of the upper legform and headform impactors
5.6 Discussion
5.7 Summary
Chapter 6 Finite Element Analysis of Lower Extremity Injuries during Vehicle Impact
6.1 Introduction
6.2 Methodology
6.3 Bending moment diagram of lower extremity
6.3.1 Medium car-to-pedestrian collision
6.3.2 Minicar-to-pedestrian collision
6.3.3 one-box type vehicle-to-pedestrian collision
6.3.4 SUV-to-pedestrian collision
6.4 Pelvis loadings
6.5 Influence of vehicle velocity on injury risk of lower extremity
6.6 Influence of vehicle velocity on injury risk for pelvis
6.7 Discussion
6.8 Summary
Chapter 7 General Discussion and Conclusions
7.1 General Discussion
7.2 Conclusions
Reference
Acknowledgements
Publications
附件一: 摘要(中文)
附件二: 本文主要研究?jī)?nèi)容與創(chuàng)新點(diǎn)概要(中文)
本文編號(hào):3418881
【文章來(lái)源】:湖南大學(xué)湖南省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:152 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
Abstract
Content
Abbreviations
Chapter 1 Introduction
1.1 Background
1.2 Epidemiology of a pedestrian accident
1.2.1 Overview of pedestrian accidents
1.2.2 Distribution of pedestrian injuries
1.2.3 Vehicle size and type
1.2.4 Impact speed
1.3 Pedestrian injury biomechanics
1.3.1 Head injury biomechanics
1.3.2 Thorax injury biomechanics
1.3.3 Lower limb injury biomechanics
1.4 Injury assessment techniques
1.4.1 Pedestrian physical dummy test
1.4.2 Mathematical models
1.5 Pedestrian safety countermeasures
1.5.1 Passive safety systems
1.5.2 Active safety systems
1.6 Aim of the present study
Chapter 2 Mathematical Theories and Development of Vehicle Finite Element Models
2.1 Introduction
2.2 Mathematical simulation theory
2.2.1 Multi-body system(MBS)dynamics
2.2.2 Explicit Finite Element Method
2.3 Vehicle FE model development
2.4 Results of the vehicle FE model validation
2.4.1 Validation of the minicar FE model
2.4.2 Validation of the one-box vehicle FE model
2.4.3 Validation of the SUV FE model
2.5 Summary
Chapter 3 Pedestrian Kinematic Behavior and Head Injuries
3.1 Introduction
3.2 Methodology
3.3 Pedestrian kinematic behavior
3.3.1 Globe kinematic behavior
3.3.2 Influence of car's front shape on pedestrian trajectories
3.3.3 Influence of vehicle impact velocity on pedestrian trajectories
3.4 Head impact conditions
3.4.1 Wrap around distance (WAD)
3.4.2 Head impact velocity
3.4.3 Head impact angle
3.5 Influence of vehicle impact speed on head injury risk
3.6 Discussion
3.7 Summary
Chapter 4 Finite Element Analysis of Chest Injury Mechanism and Injury Risk
4.1 Introduction
4.2 Methodology
4.3 Results
4.3.1 Chest impact conditions
4.3.2 Chest deformation mode
4.4 Influence of impact velocity on chest injury risk
4.5 Discussion
4.6 Summary
Chapter 5 Assessment of Chest Injuries Using Subsystem Impact Test
5.1 Introduction
5.2 Chest effective impact mass
5.2.1 Theory and method
5.2.2 Chest effective mass from MBS simulations
5.2.3 Chest effective mass from FE simulations
5.2.4 Chest effective mass
5.3 Upper legform impact test and force deformation characteristics
5.3.1 Upper legform certification test
5.3.2 Upper legform impact simulations and test
5.3.3 Force deformation characteristics
5.4 Headform impact test and force deformation characteristics
5.4.1 Set-up of the simulation
5.4.2 The result of the headform impact test
5.4.3 Force deformation characteristics
5.4.4 The headform acceleration and rib deflection
5.5 Comparsion of the upper legform and headform impactors
5.6 Discussion
5.7 Summary
Chapter 6 Finite Element Analysis of Lower Extremity Injuries during Vehicle Impact
6.1 Introduction
6.2 Methodology
6.3 Bending moment diagram of lower extremity
6.3.1 Medium car-to-pedestrian collision
6.3.2 Minicar-to-pedestrian collision
6.3.3 one-box type vehicle-to-pedestrian collision
6.3.4 SUV-to-pedestrian collision
6.4 Pelvis loadings
6.5 Influence of vehicle velocity on injury risk of lower extremity
6.6 Influence of vehicle velocity on injury risk for pelvis
6.7 Discussion
6.8 Summary
Chapter 7 General Discussion and Conclusions
7.1 General Discussion
7.2 Conclusions
Reference
Acknowledgements
Publications
附件一: 摘要(中文)
附件二: 本文主要研究?jī)?nèi)容與創(chuàng)新點(diǎn)概要(中文)
本文編號(hào):3418881
本文鏈接:http://sikaile.net/yixuelunwen/swyx/3418881.html
最近更新
教材專著