基于骨微環(huán)境設計的纖維支架促骨再生研究
[Abstract]:Oral and maxillofacial bone defect caused by inflammation, congenital malformation and surgical treatment is a common clinical manifestation in the field of stomatology and science, which makes the repair of bone defect an important problem in the field. The present invention has made some progress in the treatment of bone defects by using autologous bone graft, allogenic bone grafting, biological material and distraction osteogenesis technology, but because of secondary injury, poor shaping property, immune rejection reaction and high technical requirement, And the application thereof is limited by the problems of high price and limited osteogenic capacity. With the development of cell biology and biological materials, the artificial bone-treated bone defect constructed by the tissue engineering technology has become the hot spot of the present research. The micro-environment of bone biochemistry is the biological basis of bone tissue engineering, and is the basis for the design of bone tissue engineering scaffold material and the selection of biological activity factors. The understanding and understanding of the micro-environment of bone biochemistry will greatly promote the development of bone tissue engineering. The ideal bone tissue engineering scaffold material should have good bone conductivity and bone-induced activity. The aim of the bone tissue engineering is to realize the reconstruction and regeneration of the micro-environment system of the extracellular matrix and the molecular system of the bone biochemical signal, so as to rapidly realize the regeneration of the bone tissue. The two main components of the extracellular matrix are the collagen and the hydroxyapatite, so the material of the bone tissue engineering scaffold material should contain the two components; and the bone biochemical signal molecules can be reconstructed by selecting the appropriate biological active factor to significantly improve the bone repair efficiency. Based on the above theory, we used the electrostatic spinning method to prepare the polylactic acid-glycolic acid copolymer fiber modified by gelatin and hydroxyapatite. The surface morphology of the stent material was characterized by SEM and AFM. The MC3T3-E1 cells and the bone marrow stromal cells were inoculated into the scaffold table. The adhesion, proliferation and differentiation of osteoblasts were detected by laser confocal microscope, MTT and real-time quantitative PCR. in response to that in-vivo host inversion of the nanofiber by in vivo model It is proved that the modified nano-fiber has good osteoinductive activity and biological safety through the above experiment, so the gelatin/ nano-hydroxyapatite-modified PLGA nano-scaffold can be used as a bone tissue scaffold material for the bone regeneration collar. Domain; Gelatin/ nano-hydroxyapatite can improve bone induction and bone-guided activity of bone tissue engineering scaffold Sex. We also prepared the bionic Gelatin/ HA electrostatic spinning fiber support material, and spun the common components of the osteogenic induction condition culture medium into the Gelatin/ HA by directly spinning the sodium glycerophosphate (beta-glycinol phosphate salt, HCO3-GP) and ascorbic acid (AA) into the Gelatin/ HA. The fiber support material before and after the cross-linking preparation is observed by scanning an electron-fiber mirror; and the bone growth-promoting effect of the drug-loaded nano-fiber body is detected through the establishment of a rat skull polar-volume bone defect model, Students' ability to be tested by MICCRO CT and Histology. The result shows that the drug-loaded nano-fiber can be used as a template to guide the regeneration of bone tissue and induce the rapid induction of bone defect. The biomimetic Gelatin/ HA fiber scaffold of the carrier-GP and AA is an excellent substitute for autogenous bone, which can be used in the clinical application of bone defect. In addition, through the freeze-drying method, the EPO protein in the bone biochemical micro-environment is directly compounded with the Gelatin/ HA fiber support, and the high specific surface area and the porosity of the electrostatic spinning support are used for repairing the large amount of the EPO protein Rat skull defect. A 5 mm rat skull bone defect model was established in vivo and an EPO protein fiber was implanted. Dimensional stent material. Through the MICS and histological evaluation of the MICS The results show that the EPO fiber support material can significantly promote bone repair, and the EPO can stimulate the proliferation of the osteoblast and a large amount of the EPO. The bone matrix is secreted. Therefore, the fiber scaffold material of the Gelastin/ HA carrying the EPO is an excellent bone tissue.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:R318.08
【共引文獻】
相關(guān)期刊論文 前10條
1 殷麗華;劉琪;余占海;秦子順;;牙周膜干細胞的生物學特性及其作為種子細胞在牙周組織工程中應用的研究進展[J];吉林大學學報(醫(yī)學版);2013年02期
2 Bao-Hua Ji;Bo Huo;;Probing the mechanosensitivity in cell adhesion and migration: Experiments and modeling[J];Acta Mechanica Sinica;2013年04期
3 萬麗佳;吳星恒;;促紅細胞生成素對窒息新生大鼠心肌細胞凋亡及內(nèi)質(zhì)網(wǎng)應激相關(guān)蛋白的影響[J];中國當代兒科雜志;2013年10期
4 陳俊佶;趙強;;心肌再生——從實質(zhì)到間質(zhì)[J];國際心血管病雜志;2013年05期
5 吳貴生;葉志義;;一種殼聚糖/聚丙烯酰胺水凝膠基底材料的研究[J];功能材料;2013年20期
6 J.Chen;K.E·Wright;M.A.Birch;;Nanoscale viscoelastic properties and adhesion of polydimethylsiloxane for tissue engineering[J];Acta Mechanica Sinica;2014年01期
7 Jenna M.Shapiro;Michelle L.Oyen;;Viscoelastic analysis of single-component and composite PEG and alginate hydrogels[J];Acta Mechanica Sinica;2014年01期
8 楊旭;李蘭蘭;賀建;喬麗英;;植酸改性對AZ31鎂合金表面細胞黏附性能的影響[J];重慶大學學報;2013年11期
9 周小艷;崔亞洲;韓金祥;;2011~2012年骨分子生物學研究進展[J];國際骨科學雜志;2013年06期
10 李慶慶;黃江鴻;何美健;趙忠瑋;王大平;;Runx2及其在骨組織工程中的應用[J];國際骨科學雜志;2014年01期
相關(guān)博士學位論文 前10條
1 田海軍;長效局部緩釋型BMP-2納米膠囊在脊柱融合中的應用研究[D];第二軍醫(yī)大學;2011年
2 張艷紅;羥基磷灰石/絲素復合支架負載BMP-2的制備及其生物相容性研究[D];浙江大學;2011年
3 陳明;重組人骨形態(tài)形成蛋白-2緩釋體預防人工關(guān)節(jié)無菌性松動實驗研究[D];蘇州大學;2008年
4 郭會芳;新型促骨形成抗骨質(zhì)疏松藥物的合成與活性研究以及戊二酰亞胺抗生素結(jié)構(gòu)改造與抗病毒活性研究[D];中國協(xié)和醫(yī)科大學;2009年
5 甘強;rhBMP9的真核表達,純化及體外生物骨誘導活性分析[D];重慶醫(yī)科大學;2012年
6 李丹;PLGA/羥基磷灰石復合支架的制備及其用于骨修復的研究[D];浙江大學;2011年
7 賀軼宇;溫度敏感性水凝膠攜帶HMGB1治療大鼠心肌梗死的實驗研究[D];武漢大學;2013年
8 任娜;生物醫(yī)用鈦基植入體材料表面納米結(jié)構(gòu)的構(gòu)建及其生物學性能研究[D];山東大學;2013年
9 趙云鵬;生長因子progranulin在骨修復,皮膚炎癥以及椎間盤退變過程中的作用與機制研究[D];山東大學;2013年
10 高毅;淫羊藿苷對成骨細胞增殖分化的影響及機制探討[D];河北醫(yī)科大學;2013年
相關(guān)碩士學位論文 前10條
1 肖菲;比較盤鉆法與沖頂法行上頜竇內(nèi)提升同期種植體植入效果的實驗研究[D];青島大學;2011年
2 彭志明;HAP/CS可注射水凝膠的制備及性能研究[D];武漢理工大學;2010年
3 萬海云;不同粒徑β-TCP植骨材料對腔隙性骨缺損骨修復的影響[D];第四軍醫(yī)大學;2010年
4 黃鑫;PLGA/TCP快速成型支架復合rhBMP-2殼聚糖微球修復兔股骨髁部骨缺損的實驗研究[D];第四軍醫(yī)大學;2010年
5 馮學濤;血小板裂解液對人臍帶間充質(zhì)干細胞體外成軟骨分化的影響[D];青島大學;2012年
6 王玲菲;兩種不同礦化誘導液對根尖乳頭干細胞成骨/成牙本質(zhì)向分化的影響[D];廣西醫(yī)科大學;2012年
7 胡通;骨形態(tài)發(fā)生蛋白-2對大鼠完全脫位牙延遲再植的影響[D];河北醫(yī)科大學;2012年
8 王留霞;鼻腔遞送IGF-1對HIBD大鼠大腦的作用及FOXG1基因的表達[D];鄭州大學;2012年
9 戚娟娟;不同表面種植體軟組織袖口臨床和組織學的比較研究[D];南方醫(yī)科大學;2012年
10 張永英;PDGFR-β抑制劑AG-1295通過Erk通路促進MC3T3-E1細胞成骨分化[D];濟南大學;2012年
本文編號:2505426
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2505426.html