定穴體表標(biāo)志定位與測(cè)量
[Abstract]:Acupuncture and moxibustion is an important part of Chinese traditional medicine, which has a history of thousands of years. Acupuncture and moxibustion is the first step and the key step of acupuncture and moxibustion. Up to now, there are a variety of methods, but the accuracy of acupoint selection depends on the doctor's subjective judgment and personal experience. There are three methods for collecting acupoints according to the national standard: body surface anatomic marker localization, bone degree scale localization and finger ratio method. The three methods intersect each other when used. From the use of these three methods, the selection of "inch" and body surface mark is the guarantee of the preparation. To realize the double blind technique of acupuncture and moxibustion, we must determine these two factors. However, there is still no clear method to eliminate the errors caused by individual factors in the positioning of acupoints, and to accurately measure the body surface marks, especially in the positioning of body surface markers specified in anatomy. Based on the definition of body surface mark in traditional Chinese medicine, and taking the foot model as an example, this paper combines modern techniques such as computer vision, image processing and mathematical calculation. A method for automatic positioning and measurement of body surface marks is designed. The main work of this thesis is as follows: 1) an experimental platform for 360 擄rotation is designed. The high precision CMOS camera is used to collect the data of the foot model. 2) preprocessing the acquired foot model image, such as image position correction, gray level image conversion and image binarization. 3) several image contour extraction methods are compared, and a biometric Gabor function is proposed to process the image, and a two-dimensional Gabor filter bank is designed to extract the contour features of the foot model image. 4) using boundary chain code to extract the feature points of the image, and using the coordinate transformation between the images, the image coordinates of the inner and lateral malleolus points are obtained. 5) a man-machine interface is designed with MATLAB GUI, which is convenient for users to deal with it. Through the shooting and processing of the foot model and the use of optical equipment and image processing technology, the measurement of foot fixed hole surface mark can be realized. This method provides the precondition for the realization of double blind technique of acupuncture and moxibustion, and is beneficial to the standardization, science and normalization of acupuncture and moxibustion.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH789;R245
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王濤;呂乃光;楊劍;;基于一維標(biāo)定物的高精度標(biāo)定[J];北京信息科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
2 侯學(xué)智,楊平,趙云松;CCD圖像的輪廓特征點(diǎn)提取算法[J];電子科技大學(xué)學(xué)報(bào);2004年04期
3 王舒鵬;方莉;;利用Moravec算子提取特征點(diǎn)實(shí)現(xiàn)過(guò)程分析[J];電腦知識(shí)與技術(shù);2006年26期
4 劉小軍;胡鵬浩;;掃描測(cè)頭中CCD攝像機(jī)測(cè)量模型和坐標(biāo)轉(zhuǎn)換[J];工具技術(shù);2010年03期
5 李建萍;付麗琴;韓焱;;用于特征提取的Gabor濾波器參數(shù)設(shè)計(jì)[J];光學(xué)與光電技術(shù);2010年03期
6 毛偉民;趙勛杰;;基于神經(jīng)網(wǎng)絡(luò)的低照度彩色圖像增強(qiáng)算法[J];光學(xué)技術(shù);2010年02期
7 焦玉龍;羅秀娟;馬健康;;一種凹凸邊界上特征點(diǎn)的提取方法[J];光子學(xué)報(bào);2006年02期
8 付勇;熊俊;袁安;;醫(yī)學(xué)影像學(xué)在針灸臨床應(yīng)用中的研究概況[J];湖南中醫(yī)雜志;2008年05期
9 朱述龍,黃曉波,陳虹,邱振戈;大傾斜面陣CCD圖像的幾何校正[J];解放軍測(cè)繪學(xué)院學(xué)報(bào);1999年02期
10 張春美;龔志輝;黃艷;;幾種特征點(diǎn)提取算法的性能評(píng)估及改進(jìn)[J];測(cè)繪科學(xué)技術(shù)學(xué)報(bào);2008年03期
相關(guān)博士學(xué)位論文 前2條
1 袁野;攝像機(jī)標(biāo)定方法及邊緣檢測(cè)和輪廓跟蹤算法研究[D];大連理工大學(xué);2002年
2 董學(xué)志;Gabor小波特征跟蹤方法研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2003年
相關(guān)碩士學(xué)位論文 前6條
1 盧麗敏;圖像增強(qiáng)模型及算法研究[D];中國(guó)人民解放軍國(guó)防科學(xué)技術(shù)大學(xué);2002年
2 周國(guó)庫(kù);基于小波提取邊緣特征點(diǎn)的遙感圖像配準(zhǔn)技術(shù)[D];西北工業(yè)大學(xué);2002年
3 盧開(kāi)所;幾何形狀圖像測(cè)量[D];天津大學(xué);2004年
4 高彥平;圖像增強(qiáng)方法的研究與實(shí)現(xiàn)[D];山東科技大學(xué);2005年
5 馮悅;基于二維Gabor特征的三維人臉識(shí)別[D];華中科技大學(xué);2007年
6 康俊芳;基于Gabor變換的圖像特征提取方法研究[D];云南大學(xué);2010年
,本文編號(hào):2407673
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2407673.html