基于混沌理論的心音信號非線性動力學(xué)分析
[Abstract]:Heart sound is one of the important physiological signals of human body, which can reflect the mechanical movement of heart and large vessels. It is the most basic noninvasive and convenient method to evaluate the state of heart function in clinic. Life is the most complex nonlinear dynamic system, and the heart is the core of the circulatory system, which determines the nonlinearity and complexity of the heart sound signal produced by the heart vibration. In order to simplify and abstract the complex heart system, an ideal linear model has been established, and the linear system is analyzed and processed by time-domain, frequency-domain, time-frequency conversion and so on. However, for half a century, it has been found that linear analysis is not sufficient to study the essentially nonlinear activities of life. As a very important motion form of nonlinear system, chaos can well reveal the special regularity of the inherent randomness of nonlinear process, so this paper intends to analyze the heart sound signal from the point of view of chaos theory. In order to realize the computer-aided diagnosis of heart disease based on heart sound signal, we can deeply understand the inherent characteristics of heart sound signal in essence. In order to improve the recognition accuracy and classification accuracy of heart sound signal, the method of wavelet packet analysis and chaos theory is used to extract and classify the heart sound signal. Compared with the wavelet transform, the wavelet packet has stronger time-frequency resolution, so it can extract the local finer time-frequency information of the original signal. On the one hand, wavelet packet is used to analyze the heart sound signal from time-frequency angle, the heart sound signal is decomposed into different frequency bands by wavelet packet, and then the energy feature of the decomposed frequency band is extracted. In addition, the signal which can represent the characteristics of heart sound signal is decomposed from the component of heart sound signal decomposed by wavelet packet, and the chaotic analysis is carried out, including qualitative and quantitative analysis, in which qualitative analysis includes phase diagram and recursive diagram of heart sound signal. Quantitative analysis includes correlation dimension, maximum Lyapunov exponent and other chaotic characteristic parameters. Then the energy feature of the wavelet packet decomposition is combined with the chaotic characteristic parameter to form the characteristic parameter vector of the heart sound signal, and then the energy characteristics of each frequency band and the chaotic characteristic parameter of the heart sound signal wavelet packet are analyzed by genetic algorithm. The optimal feature vector which can represent the heart sound signal is selected. Finally, the support vector machine (SVM) is used as the classifier and the heart sound signal feature vector is used as the input to realize the automatic classification and recognition of the heart sound signal. The normal and several kinds of abnormal cardiac sound signals, such as premature beat arrhythmia, mitral stenosis, first heart sound division, aortic insufficiency and ventricular septal defect, were detected by the designed heart sound acquisition system. The method described in this paper is used for testing. The results showed that the chaotic qualitative and quantitative characteristics of normal and abnormal heart sounds were significantly different, and the correlation dimension and maximum Lyapunov index of abnormal heart sounds were higher than those of normal heart sounds. It shows that abnormal heart sound signal has high complexity. The combination of wavelet packet energy and chaotic characteristics can obtain a high recognition rate, which shows that chaotic features play an important role in revealing the nonlinear characteristics of heart sound signals. It lays a foundation for the diagnosis of heart sounds and the study of the nonlinear nature of heart sounds.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:R318.0
【參考文獻】
相關(guān)期刊論文 前10條
1 王衍文,王海濱,程敬之;廣義時頻分析及其在PCG信號分析中的應(yīng)用[J];北京生物醫(yī)學(xué)工程;1998年02期
2 王興元,朱偉勇,顧樹生;利用關(guān)聯(lián)維數(shù)分析心臟的動力學(xué)特征[J];東北大學(xué)學(xué)報;1999年06期
3 朱冰蓮;呂佶;;時頻表達在心音研究中的應(yīng)用[J];重慶大學(xué)學(xué)報(自然科學(xué)版);2006年05期
4 張雨;任成龍;;確定重構(gòu)相空間維數(shù)的方法[J];國防科技大學(xué)學(xué)報;2005年06期
5 楊志安,王光瑞,陳式剛;用等間距分格子法計算互信息函數(shù)確定延遲時間[J];計算物理;1995年04期
6 呂振環(huán),吳素文,李喜霞;論混沌學(xué)的發(fā)展、特性及其意義[J];沈陽農(nóng)業(yè)大學(xué)學(xué)報(社會科學(xué)版);2004年01期
7 胡睿;陳惠;李曉雅;王天鵝;;慢病已成為中國不可承受之重[J];中國社區(qū)醫(yī)師;2011年32期
8 林嘉宇,王躍科,黃芝平,沈振康;語音信號相空間重構(gòu)中時間延遲的選擇──復(fù)自相關(guān)法[J];信號處理;1999年03期
9 嚴勇,董筠,樓正國;心音的非線性時間序列分析[J];中國醫(yī)學(xué)物理學(xué)雜志;2004年03期
10 王興元,顧樹生;心電動態(tài)生理及病理信息的非線性動力學(xué)研究[J];中國生物醫(yī)學(xué)工程學(xué)報;2000年04期
相關(guān)會議論文 前1條
1 丁曉蓉;宋陸州;包鑫;郭興明;;心音采集及其混沌動力學(xué)分析方法的初步研究[A];中國電子學(xué)會第十七屆信息論學(xué)術(shù)年會論文集[C];2010年
相關(guān)碩士學(xué)位論文 前6條
1 董筠;心音的非線性時間序列分析[D];浙江大學(xué);2003年
2 王恒迪;非線性動力學(xué)在房顫研究中的應(yīng)用[D];北京工業(yè)大學(xué);2003年
3 周靜;心音信號分析方法的研究及其分析系統(tǒng)的開發(fā)[D];重慶大學(xué);2004年
4 姜桂仁;混沌時序的特征量分析及相空間重構(gòu)[D];江蘇大學(xué);2005年
5 王丹丹;混沌在心電數(shù)據(jù)分析中的應(yīng)用[D];中國海洋大學(xué);2006年
6 吳玉春;心音信號自動識別算法的研究[D];重慶大學(xué);2009年
本文編號:2399848
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2399848.html