3D打印雙響應紫外光固化水凝膠及其形狀記憶功能的研究
[Abstract]:3D printing is a kind of technology which uses computer software to control the machine to stack the material layer by layer to construct the target model. When it is applied to biomedical fields, it is also called "bio-printing", that is, biological materials, living cells, growth factors and so on are stacked into tissues or organs layer by layer and made active by computer-aided technology. Using 3D bio-printing technology, we can quickly, efficiently and accurately manufacture different sizes of models and complex internal structures, and through mixed printing with drugs, active factors, cells and so on, we can functionalize the model and realize organ customization. The purpose of controlled drug release. However, at present, there are still many problems in 3D printing biomaterials, such as few kinds of optional materials, harsh printing conditions (high temperature, laser, etc.), poor molding effect, complex preparation of materials, and so on. In this paper, Pluronic F127 (PEO100-PPO65-PEO100) was chemically modified to possess the double response of temperature response and ultraviolet response, so that the hydrogel model with complex internal structure and controlled drug release could be printed quickly and efficiently. On this basis, Pluronic F127 was combined with sodium alginate. The model with shape memory function could be prepared by 3D printing. First, the synthesis of modified F127 with double response and its application in 3D printing. The chemical modification of Pluronic F127 (PEO100-PPO65-PEO100), which is temperature-sensitive, was carried out by using acryloyl chloride. Carbon and carbon double bonds were introduced into the long chain end group. The modified F 127 has the characteristics of light response. The printing concentration and printing temperature of modified F127 were determined by rotary rheometer, and the diameter of printing nozzle (0.25 mm), printing platform temperature) was further determined by using 3D biological printer (3D-Bioplotter). Printing parameters such as printing speed (30 mm/s), extrusion pressure (0.6 bar) and UV source of 365 nm can make the material be formed efficiently in 5 seconds. The results of SEM characterization experiment show that 3D printing is a stacking process of physical state layer by layer. The results of swelling test and elastic modulus test showed that the mechanical properties of the model increased with the increase of printing ink concentration. The drug release experiment showed that the drug release behavior of the 3D printing model was similar to that of the traditional preparation method but the slow release effect was better. The cytotoxicity test showed that high concentration of modified F127 (0.20 g/mL) had good biocompatibility and could meet the requirement of 3D printing without post-treatment. Preparation of shape memory hydrogel with modified F127 and sodium alginate as one of the most widely used materials in 3D printing, sodium alginate is biodegradable. Non-toxic and can be gelatinized under the action of calcium ion. Because the modified F127 can form a network structure with certain mechanical properties, the shape memory function can be realized by the exchange of calcium ion and carbonate ion by mixed printing with sodium alginate. Using 3D-Bioplotter to explore the best formula of printing ink from the aspects of printing process fluency, printing accuracy, shaping effect, shape memory effect (fixed rate, recovery rate), etc. The experimental results show that the printing ink composed of modified F127 solution of 0.16g/mL and sodium alginate solution of 0.04 g/mL can achieve the ideal printing effect, in which the nozzle diameter is 0.25 mm, and the heating temperature is 35? The temperature of the platform is 40,45C, and the extrusion pressure is 0.8 bar,. The printing speed is 30 mm/s.. The printing model can realize the transformation of the temporary shape and the original shape under the action of the CaCl2 solution of 0.01 g/mL and the Na2CO3 solution of 0.02 g/mL.
【學位授予單位】:暨南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R318.08;TP391.73
【相似文獻】
相關期刊論文 前2條
1 ;生物醫(yī)學聚合物[J];激光與光電子學進展;2008年03期
2 ;高危良性前列腺增生癥病人的治療:形狀記憶支架的長期觀察[J];中華泌尿外科雜志;1998年09期
相關會議論文 前2條
1 王文利;王巖;曲宏崗;;形狀記憶功能紡織品的研究與應用[A];2009中國功能材料科技與產業(yè)高層論壇論文集[C];2009年
2 張增強;葉毓輝;;含不銹鋼微絲織物形狀記憶功能的表征方法探討[A];銅牛杯第九屆功能性紡織品及納米技術研討會論文集[C];2009年
相關重要報紙文章 前1條
1 ;演示鎳鈦合金雙向形狀記憶功能的裝置[N];中國有色金屬報;2004年
相關博士學位論文 前10條
1 楊伯光;聚噻吩基導電水凝膠研制及其在心肌組織工程中的應用研究[D];天津大學;2016年
2 賈羽潔;聚苯胺—聚對苯乙烯磺酸水凝膠基活性炭的制備與應用基礎研究[D];中國林業(yè)科學研究院;2017年
3 郭新紅;2-甲氧基雌二醇脂質納米粒水凝膠的研究[D];沈陽藥科大學;2012年
4 艾克熱木.牙生;基于不同相互作用的形狀記憶水凝膠的設計和性能表征[D];中國科學技術大學;2017年
5 高利龍;多官能度聚乙二醇衍生物的合成、凝膠化及其生物醫(yī)學應用[D];浙江大學;2016年
6 余瀚森;利用動態(tài)共價鍵構筑可注射自修復水凝膠[D];中國科學技術大學;2017年
7 黃美娜;可預防骨不連的骨修復用新型形狀記憶聚氨酯-脲的研究[D];重慶大學;2010年
8 張松松;仿生減阻涂層的制備及性能研究[D];哈爾濱工程大學;2016年
9 于珊;細胞選擇性梯度生物材料的構建及其調控細胞遷移行為研究[D];浙江大學;2017年
10 朱照琪;氧化石墨烯基納米復合水凝膠的制備及其性能研究[D];蘭州理工大學;2017年
相關碩士學位論文 前10條
1 張潔玲;3D打印雙響應紫外光固化水凝膠及其形狀記憶功能的研究[D];暨南大學;2017年
2 廖悅;光敏感自變形水凝膠作為無接觸式3D宏觀/微觀光打印平臺的研究[D];天津大學;2016年
3 裴月婷;包含堿基對的智能型超分子水凝膠的合成及應用[D];東北師范大學;2017年
4 檀梅;基于β-環(huán)糊精的功能性水凝膠的構筑及其性能研究[D];蘇州大學;2015年
5 張響;硫醇—烯點擊修飾半胱氨酸功能化透明質酸通過氧酯自然化學連接形成可注射原位水凝膠哌嗪法固相合成胸腺五肽[D];海南大學;2016年
6 李文兵;用形狀記憶功能聚合物調節(jié)表面微圖案的研究[D];西南交通大學;2013年
7 李旭光;基于免疫反應調控細胞在生物材料中的三維遷移行為[D];浙江大學;2017年
8 王福濤;蔗渣纖維素疏水改性及纖維素基水凝膠的制備及應用[D];廣西大學;2017年
9 張俊洋;近紅外光響應性MoS_2/PNIPAM復合水凝膠的制備與應用[D];天津大學;2016年
10 張超;含聚六亞甲基單胍的抗菌材料的制備與性能研究[D];浙江大學;2017年
,本文編號:2316882
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2316882.html