抗蛋白質(zhì)非特異性吸附材料內(nèi)在機(jī)理和特性的研究
[Abstract]:Anti-protein non-specific adsorption materials can effectively reduce the surface protein adsorption and improve the biocompatibility of the materials. The long effect and stability of traditional polyethylene glycol (PEG) materials in complex biological environments are very limited. It has been found that PEG molecules can activate part of human immunity, and the drug activity of PEG modified proteins is decreased sharply. Amphoteric materials such as polymethacryloxy ethyl phosphatidylcholine (pMPC).) Polysulfonbetaine methacrylate (pSBMA) and polycarboxybetaine methacrylate (pCBMA) have more and more long-lasting biocompatibility than PEG. Therefore, the study of the mechanism of anti-protein nonspecific adsorption by PEG and amphoteric ion materials is not only helpful to understand the mechanism of anti-protein adsorption, but also to select suitable anti-protein non-specific materials. It is also helpful to design and find better anti-protein non-specific adsorption materials. Based on the intrinsic mechanism and properties of non-specific anti-protein adsorption materials, a low-field NMR methodology was established to investigate the different hydration capacities of PEG and the representative amphoteric polymer pSBMA. And the interaction of macromolecular PEG with protein, and further explore the different interaction characteristics of long-chain PEG and pSBMA compared with PEG and protein under the condition of solution. Finally, the diffusion of proteins in hydrogels was designed to directly reflect the different interaction forces between PEG and SBMA. The main contents and conclusions include the following six parts: 1. The T 2 transverse relaxation time is obtained by using the CPMG sequence of PEG aqueous solution with different concentrations collected by low field NMR, and the tightly bound water molecular weight of PEG is calculated quantitatively. The results show that a EG unit is combined with a water molecule and verified by DSC method. At the same time, the physical behavior of the chain segments in the dissolution process of the polymer was tracked. 2. The low field NMR T2 inversion technique was used to quantitatively study the different hydration capacities of pSBMA and PEG and the states of water molecules around the materials. It is proved that each unit of pSBMA binds more water than PEG (SB-8, EG-1), and that the water molecules in the hydration layer of pSBMA are arranged more closely than PEG. However, after the formation of saturated water layer, the water molecules around pSBMA are freer than those around PEG. 3. The interaction between PEG with different molecular weight and protein was quantitatively studied by using T2 inversion technique of low field nuclear magnetic field. It was found that there was a strong interaction between PEG and protein in solution, and the interaction was related to the molecular weight of PEG and the type of protein. The binding constants of PEG and protein were calculated quantitatively from 104 to 105M-1.4. High field nuclear magnetic resonance (HNMR) and atomic force microscopy (AFM) were used to study the interaction between PEG and protein with different molecular weight and its effect on the binding region. It is proved that the interaction between PEG and protein is closely related to the molecular weight. Because of its high hydrophilicity and short molecular chain, small molecular weight PEG (400Da) cannot form multi-point contact with protein. Therefore, the interaction force with protein molecules was reduced sharply. 5. The different interactions between pSBMA and PEG with large molecular weight were studied by fluorescence, high field nuclear magnetic resonance and atomic force microscopy. It proves that the interaction between pSBMA and protein is not obvious. The hydrophobic interaction between PEG and protein may lead to the change of protein molecular structure. 6. The diffusion behavior of fluorescent labeled proteins in hydrogels with different ratios of PEG and SBMA was studied. It is found that the diffusion rate of protein molecules in PEG hydrogels is obviously lower than that in SBMA hydrogels, which further proves that there is a large interaction between PEG and proteins, while there is almost no interaction between SBMA and proteins.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:R318.08;TQ424
【共引文獻(xiàn)】
相關(guān)期刊論文 前8條
1 張長(zhǎng)利;楊宏;王景晶;梅青;;不同添加劑對(duì)聚乙烯醇固定化錳氧化細(xì)菌的影響[J];北京工業(yè)大學(xué)學(xué)報(bào);2013年11期
2 張恒;胡立梅;藺存國(guó);王利;苑世領(lǐng);;溶菌酶蛋白與聚合物防污膜相互作用的分子動(dòng)力學(xué)模擬[J];高分子學(xué)報(bào);2014年01期
3 魏秀珍;孔新;王松雪;楊佳;陳金媛;;兩性離子在高分子膜改性及提高膜抗污染性中的研究進(jìn)展[J];功能材料;2014年02期
4 梁嘉達(dá);王方嫻;陳新冬;陳曉紅;周健;;羧酸甜菜堿甲基丙烯酸酯與DNA組裝體系的耗散粒子動(dòng)力學(xué)模擬[J];廣東化工;2014年05期
5 Li-Jun Liu;Wen-Duo Chen;Ji-Zhong Chen;Li-Jia An;;Tumbling dynamics of individual absorbed polymer chains in shear flow[J];Chinese Chemical Letters;2014年05期
6 黃丹;鄭甜甜;劉蕊;班允赫;張陽(yáng);;超濾膜改性技術(shù)及其抗污染性能的研究[J];遼寧化工;2013年10期
7 ZHANG ShiYong;WU Yao;HE Bin;LUO Kui;GU ZhongWei;;Biodegradable polymeric nanoparticles based on amphiphilic principle:construction and application in drug delivery[J];Science China(Chemistry);2014年04期
8 李鳳英;何京;鐘海軍;;細(xì)胞穿透肽的研究進(jìn)展[J];中國(guó)新藥雜志;2013年15期
相關(guān)會(huì)議論文 前1條
1 周健;;藥物與基因傳遞體系自組裝的計(jì)算機(jī)模擬[A];中國(guó)化學(xué)會(huì)第十四屆膠體與界面化學(xué)會(huì)議論文摘要集-第5分會(huì):膠體與界面化學(xué)中的理論問(wèn)題[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 王濤;若干典型高分子體系的離子特異性效應(yīng)[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
2 段曉品;刺激響應(yīng)性聚合物膠束在抗腫瘤轉(zhuǎn)移及逆轉(zhuǎn)腫瘤耐藥中的應(yīng)用[D];沈陽(yáng)藥科大學(xué);2013年
3 鄭軍;聚合物化學(xué)性質(zhì)和表面拓?fù)浣Y(jié)構(gòu)對(duì)內(nèi)皮細(xì)胞黏附的影響[D];武漢理工大學(xué);2013年
4 劉云鴻;仿生抗生物黏附表面的設(shè)計(jì)、制備與性能研究[D];華南理工大學(xué);2013年
5 張孝進(jìn);功能化脂肪族聚碳酸酯的合成及其性能研究[D];武漢大學(xué);2012年
6 孫俊;聚乙烯亞胺衍生物的合成及其作為核酸載體的性能探討[D];華南理工大學(xué);2013年
7 袁勃;兩性離子嵌段共聚物結(jié)構(gòu)設(shè)計(jì)、制備及其生物相容性研究[D];南京大學(xué);2012年
8 涂琴;功能聚合物界面構(gòu)建及其在生命分析中的應(yīng)用[D];西北農(nóng)林科技大學(xué);2013年
9 黃國(guó)鋒;組織工程化羊膜促進(jìn)表皮細(xì)胞擴(kuò)增和真皮重建的實(shí)驗(yàn)研究[D];第二軍醫(yī)大學(xué);2013年
10 鄭志雯;生物醫(yī)用聚合物材料表面功能化構(gòu)建及抗蛋白吸附研究[D];華南理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 趙靜;新型兩親性藥物載體的合成及表征[D];鄭州大學(xué);2013年
2 施龍敏;基于DOPA粘附作用的抗生物垢材料的制備與表征[D];北京化工大學(xué);2013年
3 卞姣;ROP/ATRP聯(lián)用制備基于聚磷酸酯的嵌段共聚物及其應(yīng)用研究[D];蘇州大學(xué);2013年
4 謝檳;多巴胺與肝素共混構(gòu)建抗凝/促內(nèi)皮多功能薄膜的研究[D];西南交通大學(xué);2013年
5 魏嵬;分層多功能層層自組裝肝素表面涂層的制備和血液相容性檢測(cè)[D];北京協(xié)和醫(yī)學(xué)院;2013年
6 焦燕;水蛭素多肽改性丙烯酸系人工晶狀體及其性能的研究[D];華南理工大學(xué);2013年
7 劉紅艷;抗生物污染材料載藥體系的介觀模擬[D];華南理工大學(xué);2013年
8 郭泓雨;刺激響應(yīng)型聚合物材料的耗散粒子動(dòng)力學(xué)模擬研究[D];華南理工大學(xué);2013年
9 簡(jiǎn)浩良;羧基甜菜堿修飾的聚乙烯亞胺作為非病毒型基因載體[D];華南理工大學(xué);2013年
10 陳庭怡;GLP-1四聚體藥物蛋白的制備及其藥代動(dòng)力學(xué)和藥效學(xué)的研究[D];福建農(nóng)林大學(xué);2013年
,本文編號(hào):2267486
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2267486.html