鈦表面肝素和纖維連接蛋白微圖形的構(gòu)建及其對血小板和內(nèi)皮細(xì)胞行為的影響
[Abstract]:Intimal hyperplasia and thrombosis are the main problems after implantation of artificial cardiovascular materials. Surface modification technology can promote endothelial cell adhesion and reduce platelet adhesion, which can effectively improve the biocompatibility of materials, among which surface graphics technology is becoming a hot topic. In this paper, bionic macromolecular micrographics were constructed on the surface of pretreated titanium (Ti) by microtransfer molding in soft etching. The pretreatment of titanium includes activation of NaOH base and (APTE) coupling treatment of 3-aminopropyl triethoxy silane. The contact angle of titanium is measured by scanning electron microscope (SEM),). The surface of titanium was characterized by (FTIR) and amino quantitative analysis by Fourier transform infrared spectroscopy (FTIR). Poly (dimethylsiloxane) (PDMS) seal was prepared by casting method. After imprinting monomethoxy polyethylene glycol succinimide carbonate (mPEG-SC) with impedance protein and cell adhesion, heparin (Hep) with anticoagulant activity and fibronectin (Fn) mixture (Hep-Fn), which promoted endothelial cell adhesion, were assembled to form iPEG-SC/Hep-Fn micrograph. The Hep-Fn micrographs were characterized by SEM, contact angle measuring instrument, FTIR,Hep and Fn staining. On this basis, platelet adhesion test and endothelial cell culture were carried out in vitro. SEM, contact angle, FTIR, light microscope and fluorescence microscope showed that the surface of titanium after alkali activation became rough, hydrophilic was strengthened, and hydroxyl absorption peak appeared on the surface. After silane coupling, the surface roughness and hydrophobicity of titanium were further increased. The absorption peak of CH2 was detected by FTIR, and the density of amino on the surface was about 51 nmol / cm ~ 2. A clear pattern of stripe can be seen on the surface of a graphical sample, and the characteristic absorption peaks of mPEG-SC,Hep and Fn appear in FTIR. The staining of Hep and Fn further confirms the biological inertia of mPEG-SC. Hep and Fn are only distributed in the graphical region without mPEG-SC. Platelet adhesion test showed that platelets covered the whole surface of Ti and Hep-Fn, and platelets extended pseudopodia without agglomeration. Because of the anticoagulant effect of heparin, the number of platelet adhesion on Hep-Fn surface was less than that on Ti.nPEG-SC plate surface. Compared with plate Hep-Fn, platelet adhesion was further reduced. The number of platelet adhesion varies with the difference of the effective area of Hep-Fn in different size graphic samples. The number and distribution of activated platelets showed the same trend as that of adhesion. The number of activated platelets on the surface of graphical samples was less than that of Ti and Hep-Fn samples. The results of APTT showed that the Hep-Fn of plate and pattern did not prolong the APTT time obviously. But also did not aggravate the coagulation time, with-anticoagulant effect. The results of endothelial cell adhesion showed that the surface of Hep-Fn on the plate could promote the adhesion, spread and proliferation of endothelial cells compared with titanium, and there was almost no adhesion of endothelial cells on the surface of mPEG-SC. The morphologic surface endothelial cells are distributed along the Hep-Fn pattern. The shapes of different sizes have different effects on the orientation angle, aspect ratio and morphological index of the endothelial cells. The shapes larger than the cell size cause the cells to be arranged in two or more parallel. The pattern similar to the cell size can make the cell into a single cell array distribution, elongate and produce a leading role. The results show that the biofunctional mPEG-SC/Hep-Fn micrograph can regulate the distribution of platelet and endothelial cells, decrease platelet adhesion and regulate the adhesion, growth and proliferation of endothelial cells, and effectively improve the biocompatibility of titanium.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:R318.08
【參考文獻】
相關(guān)期刊論文 前10條
1 李永剛;張平;吳一輝;宣明;;聚二甲基硅氧烷表面親水性的研究[J];分析化學(xué);2006年04期
2 蔣小松;陳俊英;黃楠;;APTE修飾鈦氧膜并固定Ⅰ型膠原對其凝血性能的影響[J];功能材料;2008年05期
3 趙小梅,陳四海,付小潮,史錫婷,董珊,李毅,易新建;化學(xué)鍍鎳在32×32非致冷紅外焦平面互連中的應(yīng)用[J];紅外技術(shù);2005年04期
4 信思樹;普朝光;楊明珠;楊培志;;一種新型的正膠剝離技術(shù)及其應(yīng)用[J];紅外技術(shù);2006年02期
5 潘力佳,何平笙;納米器件制備的新方法——微接觸印刷術(shù)[J];化學(xué)通報;2000年12期
6 文學(xué)軍,王小祥;金屬生物材料的微粗糙表面及其生物學(xué)效應(yīng)(Ⅰ)─—金屬生物材料的微粗糙表面[J];生物醫(yī)學(xué)工程學(xué)雜志;1997年01期
7 文學(xué)軍;金屬生物材料的微粗糙表面及其生物學(xué)效應(yīng)(Ⅱ)──金屬生物材料微粗糙表面的生物學(xué)效應(yīng)[J];生物醫(yī)學(xué)工程學(xué)雜志;1997年02期
8 李伯剛,那娟娟,尹光福,殷杰,鄭昌瓊;生物碳素材料表面血小板黏附的實驗研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2004年01期
9 韓雪;陶曉杰;李述軍;趙永康;艾紅軍;;新型鈦合金陽極氧化后對成骨細(xì)胞增殖、分化的影響[J];實用口腔醫(yī)學(xué)雜志;2006年02期
10 王奕;;軟刻蝕技術(shù)[J];宿州教育學(xué)院學(xué)報;2006年05期
相關(guān)博士學(xué)位論文 前2條
1 石錦霞;軟刻蝕技術(shù)在高分子科學(xué)中的應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2008年
2 孫建國;PEG水凝膠的金微圖案化修飾及其表面細(xì)胞黏附行為的研究[D];復(fù)旦大學(xué);2009年
相關(guān)碩士學(xué)位論文 前7條
1 周超;Fn在硅烷化無機材料表面固定及定量表征方法研究[D];西南交通大學(xué);2011年
2 廖玉珍;軟刻蝕方法制備細(xì)胞模板及內(nèi)皮/平滑肌細(xì)胞的協(xié)同培養(yǎng)[D];西南交通大學(xué);2011年
3 雷麗娟;肝素微圖形的制備及對細(xì)胞行為的影響[D];西南交通大學(xué);2011年
4 何婷婷;等離子體聚丙烯酸薄膜表面纖維連接蛋白的固定及其內(nèi)皮細(xì)胞粘附行為[D];西南交通大學(xué);2011年
5 樊珊;鈦氧薄膜材料表面層粘連蛋白與纖連蛋白聯(lián)合固定以及內(nèi)皮化研究[D];西南交通大學(xué);2008年
6 鄭楠;幾種無機材料表面微溝槽的制備及其生物相容性研究[D];西南交通大學(xué);2009年
7 陳誠;利用自組裝技術(shù)在鈦表面定向固定CD34抗體及其內(nèi)皮化誘導(dǎo)研究[D];西南交通大學(xué);2009年
,本文編號:2266023
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2266023.html