基于神經(jīng)影像的多尺度動態(tài)有向連接理論與算法研究
[Abstract]:The brain is a balance of structural separation but functional integration, and it is also a classical example of complex systems. People are keen to use complex networks to study the complex human brain system. The dynamics of different space-time scales and the corresponding network structure evolution process.
Understanding the complex network topology of the brain at the anatomical and functional levels is by far the biggest challenge. In addition to using anatomical structural connections (usually referred to as white matter fascicles), many effective methods have been developed to infer brain connections. Another important method is Effective Connection (EC), which attempts to reveal the directed information transmission mechanism in the brain region. In recent years, many algorithms have been developed to detect effective connections, based on data-driven Granger. Causality (GC) is one of the powerful and effective tools.
One of the main problems in GC computing is how to deal with multivariate redundancy and confusion information; this problem is the biggest obstacle to the application of GC in neural image data sets, and the full context is centered around this thread. In addition, we also apply these algorithms to the data of specific problems, such as cognitive tasks or patients, to provide a new idea for understanding brain function and its abnormal mechanism.
This paper mainly includes three parts:
In the first part, a causal algorithm based on canonical correlation is used to reconstruct a small-scale dynamic network (a small number of network nodes, 100-102 levels). In order to detect the information interaction between multivariate/group/module, a canonical correlation GC algorithm is proposed to mine the rich information hidden at the bottom of the network from the individual level to the group level. The traditional autoregressive model estimates eliminates the effect of transient synchronous interaction on causal inference. After successful testing of the simulation data, it is used to analyze the EEG data (synchronous scalp and deep EEG) of an epileptic patient during the interval of the seizure, and the results reasonably explain the clinical symptoms associated with the seizure. The second chapter).
Physiological signals often show nonlinear dynamic characteristics, which limits the effectiveness of the above linear canonical correlation GC algorithm. In this paper, we propose a kernel function technique (projecting data into a higher dimensional feature space), which extends the canonical correlation GC algorithm to estimate nonlinear causal interactions. After testing its feasibility and validity, it is further applied to the EEG data of epileptic patients to reconstruct the spatiotemporal connection network with both linear and nonlinear causal interactions, which provides a new detection method for exploring the information transmission path during epileptic seizures (Chapter 3).
In the second part, we focus on the redundancy and dimensionality disasters faced by reconstructing mesoscale networks (large number of network nodes, 102-103 levels). This network scale corresponds to the scale of traditional cerebral cortex segmentation. Most of the brain networks constructed by functional magnetic resonance imaging (fMRI) are based on the blood-oxygenat (BOLD) of voxel average in the segmentation region. The standard conditional GC (CGC) is no longer suitable for reconstructing large-scale networks with this kind of signals. This paper presents a technique for selecting conditional variables (i.e. partially conditional GC, partia) based on the principle of carrying the information of driving variables. Lly conditioned GC (PCGC). This method is successfully applied to simulation data and high-density EEG.
In addition, there is another key problem in BOLD time series: the confusion effect of hemodynamic response function (HRF). To solve this problem, a novel blind deconvolution technique for BOLD-fMRI signals (Chapter 4) is proposed to infer inter-regional causes at the level of saphenous nerve. Fruit interaction.
By combining the two methods (blind deconvolution and PCGC), the dynamic directed information interaction in resting state can be more effectively inferred; the analysis results show that deconvolution will affect the local topological characteristics of the brain network. In addition, the analysis results also show that the conditional variable aggregation obeys a robust spatial distribution (with modularity). This distribution is not affected by scanning time (TR), repetition time (TR), 0.645s, 1.4s and 2.5s) (Chapter 5), which lays a foundation for further extending PCGC to the voxel level to construct a directed network.
The third part is the construction of large-scale (massive network nodes, 104 and above) networks, which corresponds to the order of magnitude of voxels in fMRI data. It is a typical example of building complex large-scale networks with massive data. The algorithm not only reduces the dimension of conditional variables, but also eliminates the influence of redundancy. By applying graph theory methods (such as degree, centrality and clustering coefficient), the topological features of voxel-level brain dynamic networks are described (Chapter 6), which opens a new chapter in understanding information transmission in the brain using fMRI.
After constructing the theory of directed networks of different scales, we applied it to the resting functional magnetic resonance imaging data of handedness to explore how handedness shapes resting human brain.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號】:R310;O157.5
【共引文獻】
相關(guān)期刊論文 前10條
1 常文利;;Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network[J];Communications in Theoretical Physics;2010年01期
2 S.Boccaletti;V.Latora;Y.Moreno;M.Chavezf;D.-U.Hwang;方愛麗;趙繼軍;;復(fù)雜網(wǎng)絡(luò):結(jié)構(gòu)和動力學(xué)[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2007年01期
3 張方風(fēng);陳春輝;姜璐;;基于復(fù)雜網(wǎng)絡(luò)的大腦功能連接研究[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2011年02期
4 周珂;蔡潔;熊剛強;;兩種VBM算法對阿爾茨海默病磁共振圖像診斷價值的比較[J];廣東醫(yī)學(xué)院學(xué)報;2013年05期
5 董宇航;岑松原;;利用貝葉斯方法提高光譜儀的測量準(zhǔn)確度[J];光子學(xué)報;2013年12期
6 張方風(fēng);鄭志剛;;復(fù)雜腦網(wǎng)絡(luò)研究:現(xiàn)狀與挑戰(zhàn)[J];上海理工大學(xué)學(xué)報;2012年02期
7 梁夏;王金輝;賀永;;人腦連接組研究:腦結(jié)構(gòu)網(wǎng)絡(luò)和腦功能網(wǎng)絡(luò)[J];科學(xué)通報;2010年16期
8 李延龍;賈利平;陳輝;;Hindmarsh-Rose神經(jīng)元模型在小世界網(wǎng)絡(luò)里的非線性耦合[J];蘭州大學(xué)學(xué)報(自然科學(xué)版);2012年01期
9 方小玲;于洪潔;;復(fù)雜腦網(wǎng)絡(luò)研究進展[J];力學(xué)進展;2007年04期
10 吳麟;龔洪翰;周福慶;張悅;張寧;;DTI聯(lián)合ReHo在復(fù)發(fā)-緩解型多發(fā)性硬化患者海馬區(qū)的研究[J];臨床放射學(xué)雜志;2013年10期
相關(guān)會議論文 前1條
1 Li Shunan;Li Donghui;Deng Bin;Wei Xile;Wang Jiang;Wai-Loc Chan;;A Novel Feature Extraction Method for Epilepsy EEG Signals Based on Robust Generalized Synchrony Analysis[A];第25屆中國控制與決策會議論文集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 樊令仲;基于MRI及薄層斷面解剖數(shù)據(jù)的人類小腦結(jié)構(gòu)分析[D];山東大學(xué);2010年
2 郭大慶;復(fù)雜神經(jīng)系統(tǒng)中信息傳輸及信息處理的若干問題研究[D];電子科技大學(xué);2011年
3 李諾;針刺對腦功能影響的數(shù)據(jù)采集與分析[D];天津大學(xué);2010年
4 戴慧;原發(fā)性開角型青光眼的3TMR功能磁共振研究[D];華中科技大學(xué);2011年
5 姚志軍;輕度認知障礙和阿爾茲海默病腦形態(tài)異常的磁共振影像研究[D];蘭州大學(xué);2011年
6 廖偉;基于磁共振成像的腦連接方法學(xué)及應(yīng)用研究[D];電子科技大學(xué);2011年
7 趙剛;復(fù)雜化學(xué)體系中若干非線性動力學(xué)問題的研究[D];中國科學(xué)技術(shù)大學(xué);2006年
8 汪茂勝;耦合動力系統(tǒng)中若干復(fù)雜性和非線性問題的研究[D];中國科學(xué)技術(shù)大學(xué);2007年
9 任華;偏執(zhí)型精神分裂癥患者N-back任務(wù)和靜息狀態(tài)腦功能連接差異的fMRI研究[D];天津醫(yī)科大學(xué);2007年
10 常文利;復(fù)雜網(wǎng)絡(luò)上神經(jīng)元系統(tǒng)對刺激的響應(yīng)[D];蘭州大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 王靜怡;小鼠內(nèi)側(cè)中隔神經(jīng)元放電模式與海馬Theta節(jié)律的關(guān)系[D];華東師范大學(xué);2011年
2 李芳;基于Matlab的自由活動大鼠局部場位電的采集與分析[D];山東科技大學(xué);2011年
3 吳惠華;基于復(fù)雜網(wǎng)絡(luò)的癲癇分析與電刺激抑制[D];燕山大學(xué);2007年
4 鄭鴻宇;復(fù)雜生物神經(jīng)網(wǎng)絡(luò)的建模及其動力學(xué)特性研究[D];廣西師范大學(xué);2008年
5 曾紅麗;復(fù)雜網(wǎng)絡(luò)上的自組織臨界性[D];南京航空航天大學(xué);2009年
6 甄先通;基于磁共振影像的阿爾茨海默病腦皮層厚度分析的研究[D];蘭州大學(xué);2010年
7 王振華;基于FDG-PET的腦功能分析及臨床應(yīng)用[D];蘭州大學(xué);2010年
8 朱成鈺;局部缺血性中風(fēng),大腦發(fā)育及老化的皮層信息傳遞網(wǎng)絡(luò)的研究[D];上海交通大學(xué);2010年
9 張弘;漢字心理旋轉(zhuǎn)的皮層相互作用網(wǎng)絡(luò)[D];上海交通大學(xué);2010年
10 秦云;腦電的腦網(wǎng)絡(luò)方法及應(yīng)用研究[D];電子科技大學(xué);2010年
本文編號:2227069
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2227069.html