言語誘發(fā)反應(yīng)中頻率跟隨反應(yīng)部分的瞬時(shí)能量譜分析
[Abstract]:Auditory Evoked Potentials (AEP) are the bioelectrical changes in the central nervous system associated with external stimuli produced by specific sound stimulation of the auditory system. At present, the most well-known is Auditory Brainstem Response (ABR), the most common of which is the click-induced ABR (ABR). Click Evoked Brainstem Response (click-ABR), click-ABR in healthy people generally contains seven characteristic waves: _~_waves, the latency of each wave is different, because they have their own origins. Simple sound (such as short sound, pure tone) induced ABR is widely used in clinical auditory threshold estimation, examining the pathological changes in auditory pathways, estimating the integrity of auditory pathways. Nevertheless, because these simple sounds are so different from the complex sounds we are exposed to in our daily life (such as speech, ambient noise, etc.), their ABR can be used to indicate hearing, but it can not be used to express whether we can understand.
Complex sound in human environment has the characteristics of abundant harmonics and rapid change of frequency information.The encoding of these characteristics in the brain stem is mainly divided into precise time domain encoding and spectrum encoding.The ABR derived from ABR consists of transient response and continuous response.These are closely related to the acoustic characteristics of stimuli.Transient response and non-cyclic response are closely related. Although the short and pure tones represent the transient and persistent response patterns better in their respective ABRs, it is impossible to estimate the ABR induced by complex sounds with both transient and persistent characteristics. The most mature ABR. is the ABR related study of synthetic speech (speech) monosyllabic /da/.
The study of speech-ABR (d a-ABR) induced by 40 ms synthetic speech/d a/contains two parts: transient and persistent, the former being consonant/d/, lasting 10 ms, the latter being vowel/a/, lasting 30 ms. The frequencies of the five formants (F1-F5) are: F0 = 103-121Hz, F1 = 220-720Hz, F2 = 1700-1240Hz, F3 = 2580-2500Hz, F4.5 = 3600-4500Hz.
Speech Evoked ABR (speech-ABR) can be used to study how the acoustic characteristics of stimuli are encoded in the auditory system, and its structure is very similar to the acoustic structure of / DA / and can be divided into transient and persistent parts. Following response (FFR). In which OR (V, A) is a consonant / D / induced response, FFR (D, E, F) is considered to be a periodic part of the vowel / A / induced response in stimulation. In FFR, D, E, F waves are quasi-periodic waves, which are corresponding to quasi-periodic waves d, e, f in / A / respectively, inheriting the periodic characteristics of / A / with a period of about 10 ms. The periodicity of FFR partial time domain waveforms indicates how the brainstem encodes the fundamental frequency information of vowel/a/and the fundamental frequency information. Interest is the most important information for speech recognition, so the degree of speech/a/coding in the brain stem can be judged by the integrity of the D, E and F waves in the speech-ABR time domain. It is difficult to distinguish three quasi-periodic waves intuitively because of the ambiguity of the FFR part. This indicates that signal processing technology should be used to highlight the quasi-periodic wave of the FFR part in time domain, which is helpful for clinical application of the FFR part to judge whether the speech/a/is encoded or encoded intact by the brain stem.
Because of the nonlinearity of auditory system, speech-ABR is a non-linear and non-stationary signal. Hilbert-Huang Transform (HHT) is a well-developed method to deal with non-linear and stationary signals. HHT is divided into two steps: Empirical Mode Decomposition (EMD) and Hilbert (Hilbert). EMD decomposes non-stationary data into a finite number of intrinsic mode functions (IMFs). Each IMF layer is basically a stationary signal, and the IMF oscillation mode at any point in time is unique, that is, the instantaneous frequency is unique. EMD is decomposed according to the local time characteristics of the signal itself, and is adaptive. Speech-ABR original time domain wave. Any point of time in the form may contain multiple instantaneous frequencies, because the three quasi-periodic waves in the FFR part represent the fundamental frequency information of vowels/a/, then their vibration modes should be similar. After EMD, they should be concentrated on the same layer or the same IMF.
An instantaneous energy spectrum method based on Hilbert-Huang transform is proposed to analyze the frequency-following response in speech-ABR. Because speech-ABR faithfully simulates the waveform structure of the stimulus signal and the instantaneous energy based on Hilbert envelope can highlight the extreme value, the instantaneous energy spectrum may be more direct than the original time. In this paper, the experimental results show that this method can highlight the FFR part from speech-ABR, which is conducive to further analysis and clinical application.
(1) The individual speech-ABR is decomposed into empirical mode decomposition (EMD) and a finite number of intrinsic mode functions (IMF) are obtained.
(2) calculate the instantaneous energy spectrum of each layer of IMF.
(3) observe the instantaneous energy spectrum of IMFs after speech-ABR decomposition, and record the number of layers of D, E and F.
(4) The latency and polarity of D, E and F waves in the 17-47 MS instantaneous energy spectrum of the layer are recorded by using a time window of 10 ms.
Twenty-nine adults were recorded for speech-ABR. The procedure consisted of four steps. Firstly, clinical experts identified valid data based on whether the V wave was evident in 25 patients (86%). Secondly, according to whether the FFR part was evident in the valid data, clinical experts divided them into two groups: the typical group (7 cases) and the atypical group (28%). Thirdly, the instantaneous energy spectrum based on HHT was used to process 25 valid data. Finally, clinical experts observed the FFR in the instantaneous energy spectrum of 25 valid data, and found that 23 cases (92%) had significant FFR and 2 cases (8%) could not judge.
The results show that the proposed method highlights the FFR part of the individual speech-ABR and is effective for detecting the FFR part. Compared with the conventional method, this method has two outstanding advantages: (1) the FFR part of the individual speech-ABR is clearly distinguished in the instantaneous energy spectrum than in the speech-ABR time domain waveform; (2) the individual speech-ABR part is clearly distinguished in the instantaneous energy spectrum; (2) the individual speech-ABR part is distinguished in the speech-ABR time domain waveform. The polarity of the quasi-periodic wave in the FFR part is different from that in the FFR part, it can be positive wave, but it is positive wave in the instantaneous energy spectrum.
【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:R318.0
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周云龍,劉光遠(yuǎn);持續(xù)性+Gz作用對(duì)清醒家兔腦干聽覺誘發(fā)電位的影響[J];航天醫(yī)學(xué)與醫(yī)學(xué)工程;1990年01期
2 陳秀伍,劉捤,郭連生,趙小燕,,劉博;耳蝸微音電位增大和延長(zhǎng)反應(yīng)及其臨床意義[J];中華耳鼻咽喉科雜志;1994年01期
3 高勝利;黃治物;常偉;李駿;朱素琴;;聽力正常青年人骨導(dǎo)聽覺穩(wěn)態(tài)誘發(fā)反應(yīng)的測(cè)試[J];中國(guó)臨床康復(fù);2005年45期
4 郎林福;俞道義;沈惠泉;許湘筠;王德法;張紅;;視誘發(fā)反應(yīng)與平均視網(wǎng)膜電圖同時(shí)記錄的實(shí)驗(yàn)研究[J];眼科新進(jìn)展;1983年01期
5 劉博,宋本波,劉鋌,趙小燕;對(duì)聽力正常人幾種耳聲發(fā)射基本特性的研究[J];耳鼻咽喉-頭頸外科;1996年01期
6 林巖崇,FriderickA.Lenz;肌張力障礙和震顫患者丘腦核團(tuán)微電刺激誘發(fā)反應(yīng)的對(duì)比研究[J];溫州醫(yī)學(xué)院學(xué)報(bào);1997年01期
7 陳國(guó)輝;;緣光瞳孔舒縮周期試驗(yàn)[J];眼科新進(jìn)展;1982年02期
8 范靜平,胡雨田,呂光宇,陸書昌,胡正元;~(60)Coγ線引起的豚鼠聽覺損傷[J];第二軍醫(yī)大學(xué)學(xué)報(bào);1988年04期
9 李興啟,孫建和,孫偉,姜泗長(zhǎng);缺氧豚鼠耳蝸總和電位和形態(tài)學(xué)實(shí)驗(yàn)觀察[J];中華耳鼻咽喉科雜志;1994年02期
10 黃志,蔡方成;耳蝸電圖在嬰幼兒聽力障礙診斷中的應(yīng)用[J];中華兒科雜志;1995年02期
相關(guān)會(huì)議論文 前10條
1 黃明德;丁超;孫縵利;虞燕琴;;在體自然刺激下的胡須誘發(fā)反應(yīng)的突觸可塑性研究[A];浙江省生理科學(xué)會(huì)2008年學(xué)術(shù)年會(huì)論文匯編[C];2008年
2 饒安伶;DS Holder;;感覺誘發(fā)反應(yīng)的腦電阻抗圖[A];生命科學(xué)與生物技術(shù):中國(guó)科協(xié)第三屆青年學(xué)術(shù)年會(huì)論文集[C];1998年
3 吳敏范;張雅娟;姚陽;李玉芳;楊宇;滕國(guó)璽;;貓扣帶回前部?jī)?nèi)臟與軀體傷害性傳入信息的會(huì)聚[A];中國(guó)生理學(xué)會(huì)第23屆全國(guó)會(huì)員代表大會(huì)暨生理學(xué)學(xué)術(shù)大會(huì)論文摘要文集[C];2010年
4 馮艷梅;殷善開;何景春;;高頻聽力損失對(duì)豚鼠間隔誘發(fā)反應(yīng)的影響[A];中華醫(yī)學(xué)會(huì)第十次全國(guó)耳鼻咽喉-頭頸外科學(xué)術(shù)會(huì)議論文匯編(下)[C];2007年
5 黃治物;吳展元;;聽覺穩(wěn)態(tài)誘發(fā)反應(yīng)在臨床聽力評(píng)估中的作用[A];中華醫(yī)學(xué)會(huì)第十次全國(guó)耳鼻咽喉-頭頸外科學(xué)術(shù)會(huì)議論文匯編(上)[C];2007年
6 陰正勤;;兒童視覺誘發(fā)電位檢查及其應(yīng)用[A];中華醫(yī)學(xué)會(huì)第十二屆全國(guó)眼科學(xué)術(shù)大會(huì)論文匯編[C];2007年
7 王智楠;陳平;徐忠強(qiáng);龔秋蓮;魏翠芬;劉艷;;聽力復(fù)篩嬰兒多頻穩(wěn)態(tài)誘發(fā)電位和聽性腦干誘發(fā)電位相關(guān)性的比較[A];中華醫(yī)學(xué)會(huì)第十次全國(guó)耳鼻咽喉-頭頸外科學(xué)術(shù)會(huì)議論文匯編(上)[C];2007年
8 黃麗輝;韓德民;莫玲燕;劉輝;陳靜;恩暉;蔡正華;亓貝爾;郭連生;;ABR與ASSR在聽力篩查未通過嬰幼兒聽力評(píng)估中的作用[A];中華醫(yī)學(xué)會(huì)第十次全國(guó)耳鼻咽喉-頭頸外科學(xué)術(shù)會(huì)議論文匯編(上)[C];2007年
9 陶崢;李蘊(yùn);吳皓;;0-6月齡嬰幼兒聽力障礙診斷標(biāo)準(zhǔn)的探討[A];中華醫(yī)學(xué)會(huì)第十次全國(guó)耳鼻咽喉-頭頸外科學(xué)術(shù)會(huì)議論文匯編(下)[C];2007年
10 聶文英;林倩;相麗麗;李慧;李應(yīng)會(huì);戚以勝;;新生兒聽力損失程度波動(dòng)特性及其影響因素[A];中華醫(yī)學(xué)會(huì)第十次全國(guó)耳鼻咽喉-頭頸外科學(xué)術(shù)會(huì)議論文匯編(下)[C];2007年
相關(guān)重要報(bào)紙文章 前4條
1 胡翔龍 許金森 吳寶華 楊廣應(yīng) 張福強(qiáng);循經(jīng)感傳的形成機(jī)理[N];中國(guó)中醫(yī)藥報(bào);2004年
2 王智楠;請(qǐng)關(guān)注幼兒聽力[N];健康報(bào);2006年
3 實(shí)習(xí)生 江恰 曾洋;維護(hù)女性健康 托起美好未來[N];盤錦日?qǐng)?bào);2008年
4 薛崇成;不是否定是肯定[N];中國(guó)中醫(yī)藥報(bào);2005年
相關(guān)博士學(xué)位論文 前5條
1 干德康;鞏膜內(nèi)型人工視覺假體的開發(fā)可行性、生物相容性和穩(wěn)定性的初步研究[D];復(fù)旦大學(xué);2004年
2 李克勇;聽覺系統(tǒng)聲誘發(fā)反應(yīng)的磁聲場(chǎng)記錄[D];中國(guó)協(xié)和醫(yī)科大學(xué);1996年
3 黃曉媛;針刺頭穴治療大鼠三叉神經(jīng)痛樣反應(yīng)模型的實(shí)驗(yàn)研究[D];黑龍江中醫(yī)藥大學(xué);2007年
4 李崖雪;電針下關(guān)穴、地倉穴治療大鼠三叉神經(jīng)痛的實(shí)驗(yàn)研究[D];黑龍江中醫(yī)藥大學(xué);2006年
5 陳波;急性酒精暴露對(duì)貓初級(jí)視皮層神經(jīng)元反應(yīng)特性的影響[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 郎小娥;外傷性聽覺損害聽力學(xué)評(píng)價(jià)的臨床研究[D];山西醫(yī)科大學(xué);2004年
2 李國(guó)臣;電針改善前庭功能障礙所致頸性眩暈的實(shí)驗(yàn)研究[D];成都中醫(yī)藥大學(xué);2004年
3 黃明德;觸須自然刺激誘發(fā)的桶狀皮層反應(yīng)可塑性及其機(jī)制[D];浙江大學(xué);2010年
4 梁浩;刺激隱神經(jīng)對(duì)貓扣帶回前部神經(jīng)元細(xì)胞內(nèi)電位的影響[D];吉林大學(xué);2008年
5 張雅娟;貓扣帶回前部?jī)?nèi)臟與軀體傷害性傳入信息的會(huì)聚[D];吉林大學(xué);2009年
6 孫縵利;星形膠質(zhì)細(xì)胞在桶狀皮層功能及可塑性中的作用[D];浙江大學(xué);2011年
7 徐超仁;基于DSP的嵌入式ASSR檢測(cè)儀的研究與設(shè)計(jì)[D];廈門大學(xué);2007年
8 孟萃珍;40-Hz聽穩(wěn)態(tài)指數(shù)與腦電雙頻指數(shù)對(duì)麻醉深度監(jiān)測(cè)的比較[D];首都醫(yī)科大學(xué);2007年
9 馬文;嬰幼兒大前庭導(dǎo)水管綜合征CT影像和聽力學(xué)特點(diǎn)[D];山東大學(xué);2010年
10 王海濤;貓初級(jí)視皮層細(xì)胞年齡相關(guān)的功能衰退與形態(tài)學(xué)變化研究[D];安徽師范大學(xué);2004年
本文編號(hào):2222219
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2222219.html