天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

AZ31鎂合金冠脈支架力學(xué)行為的有限元模擬

發(fā)布時(shí)間:2018-08-29 14:16
【摘要】:鎂合金具有良好的生物相容性和可降解性,已被用于作為可降解冠脈支架材料進(jìn)行研究,可降解鎂合金支架有望成為新一代心血管支架。然而,與不銹鋼材料相比,鎂合金作為支架材料,抗拉強(qiáng)度低、屈服強(qiáng)度低、斷后延伸率低、塑性變形能力差,使得鎂合金支架存在徑向回彈率大,徑向支撐力低以及應(yīng)力應(yīng)變不均勻(應(yīng)力集中)等問(wèn)題。因而本文針對(duì)鎂合金材料的力學(xué)性能特點(diǎn),對(duì)鎂合金支架結(jié)構(gòu)進(jìn)行優(yōu)化設(shè)計(jì),以彌補(bǔ)材料本身性能的不足。本文以有限元模擬為研究方法,采用AZ31鎂合金為支架材料,對(duì)課題組自行開(kāi)發(fā)的鎂合金支架結(jié)構(gòu)進(jìn)行優(yōu)化研究。通過(guò)改變支架結(jié)構(gòu)單元的長(zhǎng)度、絲寬、圓弧半徑等結(jié)構(gòu)參數(shù),同時(shí)利用系統(tǒng)分析中的敏感性分析方法,對(duì)上述不同結(jié)構(gòu)參數(shù)組合下支架的徑向回彈率、徑向支撐力以及應(yīng)力應(yīng)變分布進(jìn)行參數(shù)敏感性研究。結(jié)果表明,參數(shù)是決定結(jié)構(gòu)性能的重要因素,不同支架性能受不同結(jié)構(gòu)參數(shù)影響的敏感性不同,通過(guò)模擬分析,對(duì)于徑向回彈率而言,影響其性能的主要因素按影響力大小為長(zhǎng)度變量、絲寬變量以及半徑變量以及壁厚;對(duì)于支撐力而言,影響其性能的主要因素按影響力大小依次為長(zhǎng)度變量、絲寬變量以及壁厚變量;對(duì)于最大主應(yīng)變而言影響其性能的主要因素按影響力大小依次為長(zhǎng)度變量、絲寬變量以及半徑變量。在這些因素中,以長(zhǎng)度因素和絲寬因素為甚,分別對(duì)支架的三個(gè)性能能產(chǎn)生較大影響。而改變半徑對(duì)徑向回彈率以及最大主應(yīng)變的影響較大,對(duì)支撐力的影響較;改變壁厚能夠影響支架的支撐力性能和徑向回彈率性能,對(duì)最大主應(yīng)變的影響較小。這些變量對(duì)各自性能的影響力大小,對(duì)支架結(jié)構(gòu)設(shè)計(jì)尤其是鎂合金支架結(jié)構(gòu)的設(shè)計(jì)尤為重要,可以在支架結(jié)構(gòu)設(shè)計(jì)中作為參考。 根據(jù)課題組支架的實(shí)際實(shí)驗(yàn)中發(fā)現(xiàn),支架在變形過(guò)程中存在著變形不均勻性,主要是“之”字形支撐環(huán)在撐開(kāi)時(shí)“V”形梁張的開(kāi)角度存在差異。根據(jù)這種情況,我們對(duì)完整的支架和折疊球囊裝配在一起的組合系統(tǒng)進(jìn)行動(dòng)態(tài)模擬分析,通過(guò)改變支架的結(jié)構(gòu)、球囊的折翼的變化以及球囊的厚度的厚薄等變量,分別模擬支架在不同情況下的變形行為從模擬的結(jié)果看,球囊折翼的數(shù)量、支架與球囊的配合度、連接筋數(shù)量以及球囊自身厚度等情況對(duì)支架的擴(kuò)張不均勻性有著重要的影響。具體來(lái)講,支架與球囊的對(duì)稱性越接近,支架的擴(kuò)張?jiān)骄鶆?在實(shí)際可行的情況下,應(yīng)采用球囊的折翼數(shù)量應(yīng)與支架軸向最簡(jiǎn)單元的重復(fù)個(gè)數(shù)相同;球囊的厚度越小,支架的擴(kuò)張?jiān)骄鶆?因此在選擇球囊時(shí),應(yīng)盡量選擇薄壁球囊進(jìn)行擴(kuò)張;同時(shí),支架的連接筋分布越對(duì)稱,連接筋越多,支架擴(kuò)張?jiān)骄鶆?因此在支架連接筋的分布和數(shù)量選擇上,應(yīng)使連接筋的分布應(yīng)盡量均勻,且不能過(guò)渡減少連接筋的數(shù)量,這些舉措都有利于改善支架的對(duì)稱不均勻性。
[Abstract]:Magnesium alloys with good biocompatibility and biodegradability have been used as biodegradable coronary stent materials. Biodegradable magnesium alloy stents are expected to become a new generation of cardiovascular stent. However, compared with stainless steel, magnesium alloy has low tensile strength, low yield strength, low elongation after fracture and poor plastic deformation. Low radial support and uneven stress and strain (stress concentration) and so on. Therefore, according to the mechanical properties of magnesium alloy, the structure of magnesium alloy scaffold is optimized to make up for the deficiency of the material itself. In this paper, AZ31 magnesium alloy was used as scaffold material to optimize the structure of magnesium alloy scaffold developed by our team. By changing the structural parameters such as length, wire width and arc radius of the support structure unit, and using the sensitivity analysis method in the system analysis, the radial springback rate of the support is obtained under the combination of the above different structural parameters. The parameter sensitivity of radial support force and stress-strain distribution was studied. The results show that the parameters are an important factor to determine the structure performance, and the sensitivity of different scaffolds is different by different structural parameters. Through simulation analysis, the radial springback rate is analyzed. The main factors influencing its performance are length variable, wire width variable, radius variable and wall thickness according to the influence. For the maximum principal strain, the main factors affecting its performance are the length variable, the wire width variable and the radius variable according to the order of influence. Among these factors, the length factor and the wire width factor have great influence on the three properties of the scaffold. However, changing radius has a great effect on the radial springback rate and the maximum principal strain, but has little effect on the supporting force, while changing the wall thickness can affect the support force performance and the radial springback performance of the support, but has little effect on the maximum principal strain. The influence of these variables on their performance is particularly important for the design of the scaffold structure, especially for the magnesium alloy scaffold, which can be used as a reference in the design of the scaffold structure. According to the experimental results of our group, it is found that there is inhomogeneity of deformation during the deformation of the bracket, which is mainly due to the difference in the opening angle of the "V" beam when the "zigzag" bracing ring is extended. According to this situation, we carry out dynamic simulation analysis of the complete scaffold and the composite system assembled with the folded balloon, by changing the structure of the scaffold, the change of the balloon wing and the thickness of the balloon, and so on. According to the simulation results, the number of the balloon flaps, the matching degree between the stent and the balloon, the number of connecting tendons and the thickness of the balloon have an important effect on the unevenness of the stent expansion. Specifically, the closer the symmetry between the stent and the balloon, the more uniform the stent's expansion. When practical, the number of folding wings of the balloon should be the same as the repeated number of the simplest elements in the axial direction of the stent; the thicker the balloon, the smaller the thickness of the balloon. The more uniform the stent is, the more uniform the stent expansion is, so the thin-walled balloon should be chosen to expand the stent, and the more symmetrical the connecting tendon distribution, the more uniform the stent expansion. Therefore, in the distribution and selection of the number of connecting bars, the distribution of the connecting tendons should be as uniform as possible, and the number of connections should not be reduced over time. These measures can help to improve the symmetrical heterogeneity of the scaffolds.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:R318.08

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張慶寶;王偉強(qiáng);齊民;梁棟科;楊大智;;冠狀動(dòng)脈支架緊縮反彈行為有限元分析[J];北京生物醫(yī)學(xué)工程;2006年04期

2 唐劍飛;生物可降解性血管內(nèi)支架的研究進(jìn)展[J];國(guó)外醫(yī)學(xué)(骨科學(xué)分冊(cè));2002年04期

3 周永恒,廖健宏,蒙紅云,曾常春,劉頌豪;血管內(nèi)支架分類與技術(shù)進(jìn)展[J];華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年02期

4 倪中華;王躍軒;程潔;;球囊擴(kuò)張式冠脈支架擴(kuò)張變形機(jī)理數(shù)值模擬方法[J];機(jī)械工程學(xué)報(bào);2008年01期

5 王偉強(qiáng);楊大智;齊民;;冠狀動(dòng)脈支架膨脹行為的有限元分析[J];生物醫(yī)學(xué)工程學(xué)雜志;2006年06期

6 徐國(guó)辰;血管支架的類別及其特性[J];心血管病學(xué)進(jìn)展;1995年02期

7 龔文惠;王平;陳峰;;順層巖質(zhì)路塹邊坡穩(wěn)定性的敏感性因素分析[J];巖土力學(xué);2007年04期

8 張旭輝,龔曉南,徐日慶;邊坡穩(wěn)定影響因素敏感性的正交法計(jì)算分析[J];中國(guó)公路學(xué)報(bào);2003年01期

9 顧東風(fēng);心血管病預(yù)防的現(xiàn)狀和展望[J];中華預(yù)防醫(yī)學(xué)雜志;2003年02期

10 趙振心;劉道志;張一;;血管支架材料及其臨床研究進(jìn)展[J];中國(guó)醫(yī)療器械雜志;2005年06期

相關(guān)博士學(xué)位論文 前3條

1 王偉強(qiáng);冠狀動(dòng)脈支架力學(xué)行為有限元分析及其結(jié)構(gòu)優(yōu)化[D];大連理工大學(xué);2006年

2 吳衛(wèi);人體血管支架有限元分析與結(jié)構(gòu)拓?fù)鋬?yōu)化[D];大連理工大學(xué);2007年

3 顏廷亭;AZ31B鎂合金的生物醫(yī)用表面改性研究[D];南京理工大學(xué);2010年

,

本文編號(hào):2211451

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/swyx/2211451.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3de7c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com