電解蝕刻方法構(gòu)建種植體仿生表面的生物力學(xué)研究
本文選題:骨整合 + 電解蝕刻; 參考:《吉林大學(xué)》2013年碩士論文
【摘要】:目的:種植義齒作為現(xiàn)代口腔牙缺失的一種先進(jìn)的修復(fù)方式,為患者提供了全新的治療體驗(yàn)。但目前臨床面臨的主要問題之一是治療周期長,影響了患者的生活質(zhì)量。因此促進(jìn)早期新骨形成,縮短患者治療周期成為臨床關(guān)注的重點(diǎn)。眾所周知種植體的表面特性是影響種植體周圍早期新骨形成的重要因素,并有研究表明微米形貌促進(jìn)成骨細(xì)胞外基質(zhì)的形成和礦化,增加骨在種植體表面的機(jī)械嵌入,提高力學(xué)性能。納米形貌能模擬細(xì)胞生長環(huán)境,改變細(xì)胞行為,促進(jìn)成骨細(xì)胞的粘附、增殖和分化,具有仿生學(xué)效果,有利于羥基磷灰石(HA)等礦物質(zhì)的形成并引導(dǎo)骨礦化。然而僅有納米結(jié)構(gòu)形貌是不足以保證堅(jiān)實(shí)的骨整合的,微米級形貌仍對骨整合過程非常重要。因此兼有微納米形貌的種植體表面是目前研究的熱點(diǎn)。本實(shí)驗(yàn)應(yīng)用電解蝕刻方法獲得具有微納米復(fù)合結(jié)構(gòu)的種植體仿生表面,并通過生物力學(xué)實(shí)驗(yàn)探討這種仿生表面對早期骨形成過程的影響。 方法:通過電解蝕刻法、噴砂酸蝕法和機(jī)械拋光法分別處理純鈦柱狀種植體,獲得電解蝕刻組(EE)、噴砂酸蝕組(SLA)和光滑機(jī)械組(M)三組種植體。然后在6只家犬的一側(cè)股骨的內(nèi)側(cè)各制備三個(gè)種植窩,植入三組種植體,嚴(yán)密縫合骨膜、皮下組織和皮膚。分別于術(shù)后3周和6周處死動(dòng)物。取下標(biāo)本塊后行X線觀察,之后將標(biāo)本用電子萬能材料實(shí)驗(yàn)儀進(jìn)行拔出力測試,拔出后的種植體消毒烘干后進(jìn)行掃描電鏡觀察骨斷面形貌。 結(jié)果:種植體植入骨內(nèi)3周時(shí),EE組種植體的最大拔出力值(163.7±40.3N),EE組和SLA組(141.7±18.5N)種植體拔出力明顯的高于M組(59.4±18.7N)種植體,具有統(tǒng)計(jì)學(xué)意義(P 0.05),EE組最大,但是與SLA組差別不顯著。6周時(shí)EE組種植體的最大拔出力值(381.7±56.1N),與M組(209.3±38.0N)和SLA組(210.3±31.4N)種植體拔出力存在著顯著的差異,,EE組明顯的高于SLA組和M組,具有統(tǒng)計(jì)學(xué)意義(P 0.05),SLA組和M組拔出力差別無顯著性。6周時(shí)各組種植體拔出力均有上升的趨勢,3周三組的最大拔出力值與6周三組的最大拔出力值相比,具有顯著的差異,有統(tǒng)計(jì)學(xué)意義(P0.05)。 3周時(shí)掃描電鏡觀察種植體拔出后的骨斷面,可見3組種植體表面均發(fā)生骨沉積,并具有不同的形態(tài)。EE組低倍鏡下種植體表面粘附有均勻致密的骨組織,高倍鏡下可見骨斷裂面距植體表面距離較遠(yuǎn),未見種植體表面結(jié)構(gòu)暴露。SLA組低倍鏡下種植體表面有較薄的骨組織;高倍鏡下可見種植體表面暴露部分多孔結(jié)構(gòu)。M組低倍鏡下觀察大部分種植體表面暴露,表面有少量骨屑;高倍鏡下可見種植體表面平行排列的溝紋。6周時(shí)3組種植體表面的粘附骨組織比3周時(shí)種植體表面的粘附骨組織厚且致密,骨鈣化程度明顯提高。EE組低倍鏡觀察表面粘附骨組織明顯厚于SLA組和M組;高倍鏡下見新骨骨量較3周增加。SLA組低倍鏡下種植體表面粘附骨組織量增多;高倍鏡下可見種植體表面多孔結(jié)構(gòu)暴露明顯減少。M組低倍鏡下種植體表面細(xì)碎骨屑量增多;高倍鏡下可見表面平行溝紋較3周時(shí)減少。 結(jié)論:本實(shí)驗(yàn)應(yīng)用電解蝕刻的方法處理種植體表面構(gòu)建具有微納米復(fù)合結(jié)構(gòu)的仿生微形貌,其表面具有促進(jìn)早期成骨能力,能明顯加快骨整合速度,提高骨結(jié)合力,從而縮短種植周期。可為臨床開展早期修復(fù)及負(fù)重提供理論基礎(chǔ)。
[Abstract]:Objective: implant denture, as an advanced repair method for the loss of modern oral teeth, provides a new treatment experience for patients. However, one of the main problems facing the clinic is the long period of treatment, which affects the quality of life of the patients. Therefore, it is the focus of clinical attention to promote the early new bone formation and shorten the patient's treatment cycle. It is known that the surface characteristics of the implant are important factors affecting the early new bone formation around the implant, and some studies have shown that micron morphology promotes the formation and mineralization of the extracellular matrix of osteoblasts, increases the mechanical insertion of bone on the surface of the implant, and improves the mechanical properties. The nano morphology can mimic the cell growth environment, change the cell behavior and promote the formation of the cell The adhesion, proliferation, and differentiation of bone cells have a bionic effect, which are beneficial to the formation of hydroxyapatite (HA) and lead bone mineralization. However, only nanoscale morphology is not enough to guarantee solid bone integration. Micromorphology is still very important to the process of bone integration. In this experiment, the biomimetic surface of implants with micro nanocomposite structures was obtained by electrolysis etching, and the effects of the biomimetic surface on the early bone formation process were investigated by biomechanical experiments.
Methods: pure titanium columnar implants were treated by electrolysis etching, sand spray etching and mechanical polishing, and three groups of implants were obtained by electrolysis etching group (EE), sand jet etching group (SLA) and smooth mechanical group (M). Then three implant fossa were prepared on the medial side of one side femur of 6 dogs. The implant was implanted, the periosteum was sutured closely and the subcutaneous group was closely sutured. The animals were killed and the animals were killed 3 and 6 weeks after the operation. The X-ray observation was taken after the subscript block was taken. Then the specimen was pulled out by the electronic universal material experiment instrument. After the implant was removed and dried, the scanning electron microscope was used to observe the morphology of the bone section.
Results: the maximum pulling force of implants in EE group was (163.7 + 40.3N) at 3 weeks. The pulling out ability of group EE and SLA group (141.7 + 18.5N) was significantly higher than that of group M (59.4 + 18.7N) implants, with statistical significance (P 0.05) and the largest in EE group, but the maximum pulling force value of EE group implants was not significantly different from SLA group (381.7 +). 56.1N), there were significant differences between the M group (209.3 + 38.0N) and the SLA group (210.3 + 31.4N). The EE group was significantly higher than the SLA group and the M group, and had statistical significance (P 0.05). There was no significant difference in the pulling out force between the SLA and M groups. The maximum pulling force value of the group on the 3 Wednesday group and the group 6 on the 6 Wednesday group had no significant difference. Compared with the maximum pull-out force, there was a significant difference (P0.05).
3 weeks after 3 weeks, scanning electron microscope observed the bone cross section after the implants were pulled out. It can be seen that the surface of the 3 groups of implants had bone deposition, and the surface of the lower magnification of the.EE group had a homogeneous and dense bone tissue. The surface of the bone fracture surface was far away from the surface of the implant, and the surface structure of the implant was not seen to expose the low magnification of the.SLA group. Under the high magnification, the surface of the implant surface is exposed to most of the implant surfaces, with a small amount of bone debris on the surface, and the surface of the 3 groups of implant surfaces in the 3 groups of implant surfaces can be planted on the surface of the implant surface at the time of 3 weeks. The adherent bone tissue was thick and dense, and the degree of bone calcification increased obviously in the.EE group. The surface adherent bone tissue was thicker than that of the SLA group and the M group, and the bone mass on the surface of the low magnification implant was increased in the.SLA group under the high magnification of the bone mass compared with the 3 weeks, and the porous structure exposed to the implant surface obviously reduced.M under the high magnification. There was an increase in the amount of fine bone fragments on the surface of the implant under low magnification. The surface parallel grooves decreased at higher magnification than at 3 weeks.
Conclusion: the method of electrolytic etching is used to deal with the biomimetic micromorphology with micro nanocomposite structure on the surface of the implant. The surface has the ability to promote early osteogenesis. It can speed up the speed of bone integration, improve the bone resultant force and shorten the planting cycle, which can provide a theoretical basis for early repair and weight bearing in clinical practice.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:R783.1
【共引文獻(xiàn)】
相關(guān)期刊論文 前4條
1 楊成鑫;林東洋;江勇;王小祥;;含檸檬酸根電解液中鈦表面電解沉積羥基磷灰石晶體的動(dòng)力學(xué)過程[J];無機(jī)材料學(xué)報(bào);2010年02期
2 岳進(jìn);毛天球;雷德林;郭大剛;;仿生合成梯度含鍶磷酸鈣骨水泥的體外細(xì)胞生物學(xué)性能檢測[J];中國組織工程研究與臨床康復(fù);2008年01期
3 于海忠;付強(qiáng);;種植材料生物學(xué)特性對牙種植體生物相容性的影響[J];中國組織工程研究與臨床康復(fù);2009年03期
4 周嘉安;陳曉峰;張姝江;;兩種新型支架材料的細(xì)胞相容性[J];中國組織工程研究與臨床康復(fù);2009年08期
相關(guān)博士學(xué)位論文 前2條
1 劉世敏;鈦表面微弧氧化層的制備及評價(jià)[D];天津大學(xué);2011年
2 吳振華;梯度異質(zhì)材料實(shí)體優(yōu)化設(shè)計(jì)及成型規(guī)劃方法研究[D];合肥工業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前3條
1 潘福勤;鈦及鈦合金種值體的兩種表面處理對細(xì)菌粘附能力的影響[D];山西醫(yī)科大學(xué);2006年
2 何蕓;新型種植體骨結(jié)合研究[D];四川大學(xué);2007年
3 杜海洋;基于分離變量法的功能梯度結(jié)構(gòu)熱傳導(dǎo)研究[D];河北工程大學(xué);2012年
本文編號:2097092
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2097092.html