微流體隔離泵送和微流體次序流動(dòng)系統(tǒng)研究
本文選題:微流體通用平臺(tái) + 氣泡。 參考:《哈爾濱工業(yè)大學(xué)》2015年博士論文
【摘要】:微觀尺度下的高傳熱傳質(zhì)效率和低物質(zhì)能量消耗使微流體技術(shù)在疾病即時(shí)診斷和環(huán)境監(jiān)測(cè)等領(lǐng)域具有巨大應(yīng)用潛力,但目前微流體技術(shù)還無(wú)法很好的解決液體次序流動(dòng)芯片及平臺(tái)的通用性和可控性差、容易出現(xiàn)氣泡等問(wèn)題。本論文針對(duì)微流體分子診斷(Microfluidic molecular diagnostic)中的液體次序流動(dòng)和控制提出一種新型微流體負(fù)壓驅(qū)動(dòng)泵送技術(shù),研究一種新型核酸與蛋白質(zhì)測(cè)定次序流動(dòng)控制通用平臺(tái),實(shí)現(xiàn)不同形式的多樣本、多過(guò)程的流體泵送控制,從而促進(jìn)和推動(dòng)微流體疾病即時(shí)診斷相關(guān)產(chǎn)品的成熟化。由聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)材料制作的微流體芯片,通過(guò)負(fù)壓驅(qū)動(dòng)進(jìn)行泵送時(shí)易產(chǎn)生影響微流體芯片正常功能的無(wú)用空氣氣泡。本文研究負(fù)壓流動(dòng)中PDMS流道內(nèi)無(wú)用氣泡生成和長(zhǎng)大機(jī)理,基于PDMS的表面斥水性和流道結(jié)構(gòu)特性,提出在流道內(nèi)不同位置生成氣泡的物理模型,并建立考慮多相間物質(zhì)傳遞和壓力變化的多物理場(chǎng)耦合數(shù)學(xué)模型,對(duì)氣泡在形成后的體積變化過(guò)程進(jìn)行數(shù)值仿真分析和實(shí)驗(yàn)驗(yàn)證,對(duì)氣泡變化過(guò)程中氣泡長(zhǎng)大速率特性進(jìn)行分析,研究氣泡平均變化速率與關(guān)鍵影響參數(shù)之間的關(guān)系。在微流道內(nèi)氣泡產(chǎn)生和變化機(jī)理研究基礎(chǔ)上,本論文提出一種負(fù)壓驅(qū)動(dòng)的微流體液體隔離泵送技術(shù)。利用PDMS材料的選擇透過(guò)特性,將被泵送液體與負(fù)壓驅(qū)動(dòng)氣源隔離,依靠通道之間空氣擴(kuò)散引起的流道壓力變化進(jìn)行液體泵送,從根本上避免了液體流動(dòng)時(shí)流道內(nèi)無(wú)用氣泡的形成,并且實(shí)現(xiàn)了封閉流道結(jié)構(gòu)內(nèi)的液體泵送。本文對(duì)該微泵技術(shù)的液體流動(dòng)過(guò)程進(jìn)行數(shù)學(xué)模型的研究和仿真計(jì)算對(duì)比,分析關(guān)鍵過(guò)程特性和設(shè)計(jì)參數(shù);對(duì)該微泵技術(shù)進(jìn)行實(shí)驗(yàn)研究,得出液體泵送速率與設(shè)計(jì)參數(shù)之間的定量關(guān)系;為擴(kuò)大應(yīng)用領(lǐng)域,在該微泵上集成手指薄膜泵,開(kāi)發(fā)可以脫離外部能源支持、進(jìn)行獨(dú)立操作的微流體泵送技術(shù)。處于同一平面的液體流道與負(fù)壓氣體通道之間無(wú)法實(shí)現(xiàn)相互交叉的立體結(jié)構(gòu)關(guān)系,無(wú)法集成多層結(jié)構(gòu)的控制模塊。本文提出多層復(fù)合結(jié)構(gòu)液體隔離泵送技術(shù),采用熱塑塑料和硅膠薄膜等材料,將液體流道和氣體流道分別置于不同平面結(jié)構(gòu)上,兩者之間通過(guò)透氣硅膠薄膜隔離,并在片上集成微閥等立體控制結(jié)構(gòu)。本文對(duì)復(fù)合結(jié)構(gòu)芯片的快速、低成本制備方法進(jìn)行研究,在更短的時(shí)間內(nèi)將芯片設(shè)計(jì)轉(zhuǎn)化制備成為復(fù)合結(jié)構(gòu)微流體芯片,提高測(cè)試和優(yōu)化效率。本文設(shè)計(jì)具有無(wú)氣泡、高可控性、通用性、自動(dòng)化等特點(diǎn)的微流體次序流動(dòng)與控制平臺(tái),并對(duì)不同類(lèi)型的微流體次序流動(dòng)芯片進(jìn)行研究。本文在復(fù)合結(jié)構(gòu)微流體芯片上集成一定數(shù)目的氣動(dòng)薄膜微閥,使負(fù)壓驅(qū)動(dòng)氣體同時(shí)對(duì)液體泵送和回路控制進(jìn)行操作,在此基礎(chǔ)上分別對(duì)三種面向核酸測(cè)定的離散化次序流動(dòng)芯片以及面向蛋白質(zhì)測(cè)定的次序流動(dòng)芯片的結(jié)構(gòu)、工作原理和流動(dòng)特性進(jìn)行研究。本文對(duì)可編程的微型氣動(dòng)系統(tǒng)進(jìn)行設(shè)計(jì)和測(cè)試,并配合次序流動(dòng)芯片對(duì)自動(dòng)化、多樣本、多試劑、多步驟的微流體次序流動(dòng)控制平臺(tái)進(jìn)行實(shí)驗(yàn)研究。
[Abstract]:Microscale Gao Chuanre mass transfer efficiency and low energy consumption make microfluidic technology have great potential in the field of real-time diagnosis of disease and environmental monitoring. But at present, microfluidic technology can not solve the problems of liquid order flow chip and the poor controllability of the platform, easy to appear bubbles and so on. A new type of microfluidic negative pressure driving pump technology is proposed for liquid sequence flow and control in Microfluidic molecular diagnostic. A new type of common platform for sequencing flow control for nucleic acid and protein determination is studied. A micro fluid chip made of Polydimethylsiloxane (Polydimethylsiloxane, PDMS) material, which is made by the material of poly (methyl siloxane) (PDMS), can easily produce unused air bubbles that affect the normal function of microfluidic chips by negative pressure driving. This paper investigates the formation of unused bubbles in the PDMS flow channel in negative pressure flow and The growth mechanism, based on the surface water repellency and channel structure characteristics of PDMS, presents a physical model for the formation of bubbles at different locations in the flow channel, and establishes a multi physical field coupling mathematical model considering the multiphase material transfer and pressure change, and carries out numerical simulation analysis and experimental verification on the volume change over the bubble after the formation of the bubble. The relationship between the average change rate of bubble and the key parameters in the change process is analyzed. On the basis of the study on the mechanism of bubble generation and change in the micro channel, a negative pressure driven micro fluid liquid isolation pump technology is proposed in this paper. The selection of the PDMS material will be pumped by the pump. The liquid and the negative pressure drive gas source isolation, depending on the flow channel pressure change caused by the air diffusion between the channels to carry out the liquid pump, which fundamentally avoids the formation of the useless bubbles in the flow passage of the liquid flow, and realizes the liquid pump in the closed flow channel structure. Compared with the simulation calculation, the characteristics of the key process and the design parameters are analyzed. The quantitative relationship between the liquid pump rate and the design parameters is obtained by the experimental study of the micro pump technology. In order to expand the application field, the finger film pump is integrated on the micro pump, and the micro fluid pump technology can be independently operated from the external energy support to carry out the independent operation. The relationship between the liquid channel and the negative pressure gas channel in the same plane can not be realized, and the control module of multilayer structure can not be integrated. In this paper, the multi-layer composite structure liquid isolation pump technology is put forward. The liquid channel and the gas channel are put in different leveling of the liquid channel and the gas channel, respectively. In the surface structure, the two kinds of stereoscopic control structures are separated by air permeable silica gel film, and micro valves are integrated on the chip. In this paper, the fast and low cost preparation methods of the composite structure chip are studied. In a short time, the chip design is transformed into a composite structure microchip to improve the testing and optimization efficiency. A micro fluid sequence flow and control platform with no bubbles, high controllability, versatility, automation and other characteristics, and the study of different types of microfluidic sequence flow chips. This paper integrates a certain number of pneumatic thin film microvalves on a composite microchip to make the negative pressure driven gas simultaneously pump and loop control of the liquid. On this basis, three discrete sequence flow chips for nucleic acid determination and the structure, working principle and flow characteristics of the sequence flow chip for protein determination are studied. The programmable micro pneumatic system is designed and tested in this paper, and the sequence flow chip is combined with automation, diversity, and more. Reagents, multi-step microfluidic order flow control platform are studied.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:R318;TN405
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 馮焱穎,周兆英,葉雄英,湯揚(yáng)華;微流體驅(qū)動(dòng)與控制技術(shù)研究進(jìn)展[J];力學(xué)進(jìn)展;2002年01期
2 王洪成;侯麗雅;章維一;;驅(qū)動(dòng)電壓波形修圓對(duì)微流體脈沖慣性力和驅(qū)動(dòng)效果的影響[J];光學(xué)精密工程;2012年10期
3 Dan E.Angelescu;Christopher Harrison;Ronald van Hal;Joyce Wong;Eric Donzier;Olivier Vancauwenberghe;Anthony R.H.Goodwin;Maria Manrique;Yu-Chong Tai;;潛力巨大的微技術(shù)世界[J];國(guó)外測(cè)井技術(shù);2008年05期
4 章維一;侯麗雅;;微流體數(shù)字化的科學(xué)與技術(shù)問(wèn)題(Ⅱ):物質(zhì)數(shù)字化及物質(zhì)能量信息統(tǒng)一數(shù)字化概念研究[J];科技導(dǎo)報(bào);2006年03期
5 ;[J];;年期
相關(guān)會(huì)議論文 前2條
1 吳健康;;復(fù)雜微流體系統(tǒng)流動(dòng)—電場(chǎng)—熱傳導(dǎo)耦合作用的若干基礎(chǔ)問(wèn)題和應(yīng)用[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年
2 晁侃;吳健康;;微流體系統(tǒng)電滲流熱效應(yīng)[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年
相關(guān)博士學(xué)位論文 前3條
1 劉吉曉;微流體隔離泵送和微流體次序流動(dòng)系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2015年
2 沙菁(豐刀女);數(shù)字化無(wú)閥微泵的設(shè)計(jì)、制作及應(yīng)用實(shí)驗(yàn)研究[D];南京理工大學(xué);2007年
3 朱麗;微流體數(shù)字化噴射技術(shù)及其在微混合中的應(yīng)用研究[D];南京理工大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 張淼;新型碘125籽源核芯的設(shè)計(jì)與制備研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
2 武東健;基于粘度修正理論的微流體阻尼特性分析[D];西安電子科技大學(xué);2005年
3 朱夢(mèng)義;介電潤(rùn)濕驅(qū)動(dòng)的數(shù)字微流體仿真研究[D];吉林大學(xué);2007年
4 汪洪丹;微流體系統(tǒng)的數(shù)值模擬[D];華中科技大學(xué);2008年
5 杜少博;一種應(yīng)用于生物細(xì)胞檢測(cè)的微流體陣列設(shè)計(jì)與仿真[D];太原理工大學(xué);2013年
6 黃孫峰;微流體系統(tǒng)中的玻璃微管道工藝及其流動(dòng)特性研究[D];南京理工大學(xué);2004年
7 張敬濤;行波微流體驅(qū)動(dòng)的理論分析與仿真[D];山東大學(xué);2010年
8 鞠鑫;微流體測(cè)控組件研究[D];黑龍江大學(xué);2005年
9 吳宣;壓電驅(qū)動(dòng)微流體系統(tǒng)脈動(dòng)抑制方法與實(shí)驗(yàn)研究[D];蘇州大學(xué);2015年
10 江興娥;超聲行波微流體驅(qū)動(dòng)與控制技術(shù)的基礎(chǔ)性研究[D];山東大學(xué);2006年
,本文編號(hào):2067095
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2067095.html