驅(qū)動—傳感—結(jié)構(gòu)一體的SMA人工骨骼肌生物靈感設(shè)計研究
本文選題:人工骨骼肌 + 生物靈感設(shè)計; 參考:《上海交通大學(xué)》2014年博士論文
【摘要】:骨骼肌是自然界最完美高效的生物驅(qū)動器。數(shù)百萬年的生物進化使骨骼肌不僅具有柔性、大功率密度等特性,還具有集成驅(qū)動-傳感-儲能等多功能特性。骨骼肌作為自然界動物運動系統(tǒng)最重要的組成部分,讓動物呈現(xiàn)出令人驚嘆的運動特性。多年來,研究學(xué)者一致認為,如果人類可以實現(xiàn)生物骨骼肌仿生,就有可能實現(xiàn)復(fù)雜的生物多樣性運動。因此骨骼肌仿生一直是國內(nèi)外學(xué)者競相研究的熱點。然而骨骼肌仿生面臨著仿生設(shè)計準(zhǔn)則以及技術(shù)實現(xiàn)兩大挑戰(zhàn)。仿生設(shè)計旨在基于生物靈感解決工程問題。由于生物體大多具有獨特且復(fù)雜的結(jié)構(gòu)功能等特性,仿生設(shè)計并非是對生物體的盲目模擬,而是在工程問題分析、生物功能辨識以及技術(shù)實現(xiàn)等多方面的優(yōu)化權(quán)衡。 本學(xué)位論文以實現(xiàn)具有柔性、大功率密度、以及集成驅(qū)動-傳感功能的人工骨骼肌為目標(biāo)。由于生物骨骼肌的復(fù)雜多變性,實現(xiàn)骨骼肌仿生首先需要解決仿生設(shè)計準(zhǔn)則問題,即如何指導(dǎo)仿生設(shè)計;其次是仿生材料的選擇及處理,即如何實現(xiàn)仿生設(shè)計。本文系統(tǒng)地提出了生物靈感設(shè)計體系架構(gòu),指導(dǎo)人工骨骼肌的仿生設(shè)計,進一步以形狀記憶合金(SMA)為主要驅(qū)動元素,實現(xiàn)了滿足骨骼肌生物力學(xué)特性仿生的SMA人工骨骼肌設(shè)計。此外,通過深入研究SMA自傳感特性及非線性遲滯特性等關(guān)鍵技術(shù)問題,實現(xiàn)了驅(qū)動-傳感-結(jié)構(gòu)集成設(shè)計以及消除SMA遲滯對SMA-AM驅(qū)動精度的影響,最后將SMA-AM初步應(yīng)用于踝足康復(fù)系統(tǒng)。本文的主要研究工作及成果歸納如下: 一、人工骨骼肌生物靈感設(shè)計體系架構(gòu)。系統(tǒng)地建立了生物靈感設(shè)計體系架構(gòu)及設(shè)計準(zhǔn)則,指出仿生設(shè)計主要包含生物系統(tǒng)辨識和工程系統(tǒng)實現(xiàn)兩部分,并共同影響仿生設(shè)計程度。此外,依據(jù)設(shè)計體系架構(gòu),對骨骼肌系統(tǒng)進行了詳細的分析和辨識,簡化了骨骼肌結(jié)構(gòu)和功能特性,并建立了骨骼肌生物力學(xué)模型,作為骨骼肌仿生設(shè)計的指導(dǎo)準(zhǔn)則,為下一步人工骨骼肌的研制奠定了理論基礎(chǔ)。 二、驅(qū)動-傳感-結(jié)構(gòu)集成的新型SMA人工骨骼肌的研制。基于上一步建立的設(shè)計體系架構(gòu)以及骨骼肌生物力學(xué)模型,利用回轉(zhuǎn)并聯(lián)式SMA絲實現(xiàn)對骨骼肌力-速度、主動力-長度的力學(xué)特性模擬,利用由PET網(wǎng)并聯(lián)硅橡膠管組成的CMPC實現(xiàn)對骨骼肌被動力-長度特性的模擬。類骨骼肌實驗表明,SMA-AM初步實現(xiàn)了對骨骼肌生物力學(xué)特性、驅(qū)動功能及儲能功能的模擬。為進一步實現(xiàn)SMA-AM驅(qū)動-傳感-結(jié)構(gòu)集成設(shè)計,在深入分析了SMA電阻率變化特性的基礎(chǔ)上,,推導(dǎo)建立了關(guān)于SMA的自傳感模型。精確的跟蹤控制證明了SMA的自傳感功能,從而為后續(xù)實現(xiàn)基于SMA-AM集成驅(qū)動與傳感的主動式踝足康復(fù)系統(tǒng)的研制奠定了理論基礎(chǔ)。 三、SMA人工骨骼肌遲滯建模及補償控制。SMA固有的非線性飽和遲滯特性嚴(yán)重影響了SMA-AM的驅(qū)動控制速度和精度,甚至?xí)斐煽刂频牟环(wěn)定性。為消除SMA遲滯影響,首先對SMA在不同負載以及驅(qū)動頻率下的遲滯變化特性做了深入分析,并依此建立了基于Sigmoid函數(shù)的遲滯(SBH)模型。實驗結(jié)果表明SBH模型可以有效地描述SMA遲滯曲線。進一步在此基礎(chǔ)上,建立了基于逆SBH模型的前饋控制系統(tǒng),實驗結(jié)果進一步表明,利用SBH模型可以有效地補償SMA遲滯曲線,從而為下一步SMA-AM的精確快速跟蹤控制應(yīng)用奠定了基礎(chǔ)。 四、SMA人工骨骼肌在踝足康復(fù)系統(tǒng)中的應(yīng)用探索。為驗證SMA-AM的驅(qū)動與自傳感特性,設(shè)計了基于SMA-AM驅(qū)動的主動式踝足康復(fù)系統(tǒng),該系統(tǒng)具有結(jié)構(gòu)簡單緊湊,大功率密度,大輸出力等特性,有效地實現(xiàn)了人體踝關(guān)節(jié)的背屈/趾屈。為深入分析該系統(tǒng)的動力學(xué)特性,從SMA熱驅(qū)動特性入手,結(jié)合SMA電路特性、傳熱特性、遲滯特性、自傳感特性以及機械振動特性,建立了完整反映SMA-AM驅(qū)動系統(tǒng)在多場耦合特性下的綜合動力學(xué)模型,進一步基于上述綜合建模設(shè)計了滑?刂破鳎⒗肔yapunov函數(shù)證明了SMA閉環(huán)控制系統(tǒng)的穩(wěn)定性;最后通過實驗證明了綜合動力學(xué)模型的正確性以及所設(shè)計的控制器的有效性。實現(xiàn)了踝足外骨骼自傳感條件下角度的精確和快速跟蹤,響應(yīng)頻率達到1Hz,RMS減小了82%,初步滿足了踝足康復(fù)應(yīng)用要求。
[Abstract]:Skeletal muscle is the most perfect and efficient biological drive in nature. Millions of years of biological evolution make skeletal muscles not only flexible, high-power density, but also the multi-functional characteristics of integrated drive sensing and energy storage. The skeletal muscle is the most important component of the natural animal motion system, making the animals present an amazing movement. Characteristics. Over the years, researchers have agreed that if human skeletal muscle bionics can be realized, it is possible to realize complex biological diversity movement. Therefore, skeletal muscle bionics has always been a hot spot for scholars at home and abroad. However, skeletal muscle bionics is faced with two major challenges of biomimetic design criteria and technology implementation. The bionic design is not a blind simulation of the organism because of the unique and complex structural functions of the organism. It is a trade-off between the engineering problem analysis, the biological function identification and the technical implementation.
This thesis aims to realize the artificial skeletal muscles with flexible, high power density and integrated drive sensing function. Because of the complex and multi degeneration of the skeletal muscle, the bionic design criteria need to be solved first, that is, how to guide the bionic design; secondly, the selection and treatment of biomimetic materials, that is, how to implement the biomimetic material In this paper, a bionic design system is put forward in this paper to guide the bionic design of artificial skeletal muscle, and to further use shape memory alloy (SMA) as the main driving element to realize the SMA artificial skeletal muscle design satisfying the biomechanical properties of skeletal muscles. In addition, through the in-depth study of the SMA autobiography characteristics and the nonlinear delay. The key technical problems, such as hysteresis, have realized the drive sensing structure integration design and the elimination of the effect of SMA hysteresis on the precision of SMA-AM drive. Finally, SMA-AM is applied to the ankle foot rehabilitation system. The main research work and results of this paper are summarized as follows:
First, the architecture of artificial skeletal muscle biologic Inspiration Design. The architecture and design criteria of biological inspiration design are established systematically. It is pointed out that bionic design mainly includes two parts of biological system identification and engineering system implementation, and it affects the degree of bionic design together. In addition, the skeletal muscle system is detailedly divided according to the design system architecture. The structural and functional characteristics of skeletal muscle were simplified and the biomechanical model of skeletal muscle was established. It was the guiding principle for the bionic design of skeletal muscle and laid a theoretical foundation for the development of the next artificial skeletal muscle.
Two, the development of a new type of SMA artificial skeletal muscle, driven by sensing structure integration. Based on the design architecture and skeletal muscle biomechanical model established in the last step, the mechanical characteristics of skeletal muscle force velocity, active force length are simulated with the parallel SMA wire, and the skeleton of the PET network parallel silicon rubber tube is used to realize the skeleton. The simulation of muscle strength and length characteristics. The skeletal muscle experiments show that SMA-AM has preliminarily realized the simulation of biomechanical properties, driving function and energy storage function of skeletal muscle. In order to further realize the SMA-AM drive sensing structure integration design, the Autobiography of the SMA is derived on the basis of the in-depth analysis of the characteristics of the SMA resistivity change. The model. Accurate tracking and control proved the autobiography function of SMA, thus laying a theoretical foundation for the subsequent implementation of the active ankle foot rehabilitation system based on SMA-AM integrated drive and sensing.
Three, SMA artificial skeletal muscle Hysteresis Modeling and compensation control.SMA inherent nonlinear saturation hysteresis seriously affects the driving control speed and precision of SMA-AM, and even results in the instability of control. In order to eliminate the effect of SMA hysteresis, the hysteresis characteristics of SMA under different loads and driving frequencies are analyzed. The Sigmoid function based hysteresis (SBH) model is established. The experimental results show that the SBH model can effectively describe the SMA hysteresis curve. On this basis, the feedforward control system based on the inverse SBH model is established. The experimental results show that the SBH model can effectively compensate the SMA hysteresis curve and thus be the next SMA-AM. It lays the foundation for the application of accurate and fast tracking control.
Four, the application of SMA artificial skeletal muscle in ankle foot rehabilitation system. In order to verify the driving and autobiography characteristics of SMA-AM, an active ankle foot rehabilitation system based on SMA-AM driven is designed. The system has the characteristics of simple and compact structure, high power density, large output force and so on. It effectively realizes the back flexion / toe flexion of the human ankle. The dynamic characteristics of the system are analyzed, starting with the SMA thermal driving characteristics, combining with the characteristics of SMA circuit, heat transfer, hysteresis, autobiography and mechanical vibration, a comprehensive dynamic model is established to fully reflect the multi field coupling characteristics of the SMA-AM drive system, and a sliding mode controller is designed and designed on the basis of the above comprehensive modeling. The stability of the SMA closed loop control system is proved by the Lyapunov function. Finally, the correctness of the integrated dynamic model and the effectiveness of the designed controller are proved by the experiment. The accuracy and fast tracking of the angle of the ankle foot autobiography is realized, the response frequency is 1Hz, the RMS is reduced by 82%, and the ankle foot Kang is preliminarily satisfied. Re application requirements.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:R318.17
【參考文獻】
相關(guān)期刊論文 前10條
1 Ballel.Z.Moayad;;Effects of Biomimetic Surface Designs on Furrow Opener Performance[J];Journal of Bionic Engineering;2009年03期
2 ;Collective mechanism of molecular motors and a dynamic mechanical model for sarcomere[J];Science China(Technological Sciences);2011年08期
3 ;A dynamic model of skeletal muscle based on collective behavior of myosin motors-Biomechanics of skeletal muscle based on working mechanism of myosin motors(I)[J];Science China(Technological Sciences);2012年06期
4 殷躍紅;郭朝;;分子馬達集體運行機制及肌小節(jié)動態(tài)力學(xué)模型[J];中國科學(xué):技術(shù)科學(xué);2011年11期
5 郭朝;殷躍紅;;基于分子馬達集體運行機制的骨骼肌收縮動態(tài)力學(xué)模型——基于分子馬達運行機制的骨骼肌生物力學(xué)原理(Ⅰ)[J];中國科學(xué):技術(shù)科學(xué);2012年06期
6 殷躍紅;陳幸;;骨骼肌收縮的生物電化學(xué)變頻調(diào)控原理——基于分子馬達運行機制的骨骼肌生物力學(xué)原理(Ⅱ)[J];中國科學(xué):技術(shù)科學(xué);2012年08期
7 劉旺中;陳照波;黃山云;焦映厚;;形狀記憶合金遲滯模型[J];吉林大學(xué)學(xué)報(工學(xué)版);2012年03期
8 岑海堂;陳五一;;仿生學(xué)概念及其演變[J];機械設(shè)計;2007年07期
9 ;Coupling mechanism of multi-force interactions in the myosin molecular motor[J];Chinese Science Bulletin;2010年31期
10 馮穎;胡躍明;蘇春翌;;基于Prandtl-Ishlinskii模型的一類回滯非線性系統(tǒng)自適應(yīng)控制[J];自動化學(xué)報;2006年03期
相關(guān)博士學(xué)位論文 前2條
1 郭朝;基于分子馬達的骨骼肌生物力學(xué)原理及其在外骨骼機器人人機力交互中應(yīng)用[D];上海交通大學(xué);2012年
2 谷國迎;壓電陶瓷驅(qū)動微位移平臺的磁滯補償控制理論和方法研究[D];上海交通大學(xué);2012年
本文編號:2057365
本文鏈接:http://sikaile.net/yixuelunwen/swyx/2057365.html