自由基加成反應(yīng)及其在開發(fā)體內(nèi)止血材料中的應(yīng)用
本文選題:微創(chuàng)止血 + 自由基加成; 參考:《廣州醫(yī)科大學(xué)》2017年碩士論文
【摘要】:自由基加成反應(yīng)在紫外光固化中非常重要。裂解型光引發(fā)劑在紫外光照射下躍遷至激發(fā)態(tài),從而均裂生成自由基。苯甲酰自由基是常見的光解產(chǎn)物,其通過加到丙烯酸酯單體上,形成初級自由基,繼而引發(fā)聚合反應(yīng)。目前對于自由基加成反應(yīng)的研究多集中于動力學(xué)方面,而基于過渡態(tài)理論,從能量、反應(yīng)速率等方面對自由基加成反應(yīng)進行的理論研究較少,把自由基加成反應(yīng)結(jié)合到生物止血材料的研究也沒有相關(guān)文獻報道。本論文在第一章從密度泛函角度研究出發(fā),研究苯甲酰自由基與戊烯、烯丙基甲基醚、丙烯酸甲酯三個單體的自由基加成反應(yīng)。通過能量與構(gòu)象變化分析,發(fā)現(xiàn)丙烯酸甲酯的活化能是三個反應(yīng)體系中最小的,這是由于具有較小的形變能引起的。而戊烯與烯丙基甲基醚單體卻因具有相似的形變而導(dǎo)致它們的形變能相近。通過自由基與烯烴單體的相互作用來揭示自由基加成反應(yīng)的機理,并且通過弱相互作用的可視化加以證明其存在。弱相互作用分析研究發(fā)現(xiàn)三個反應(yīng)體系的弱相互作用都來源于末端C12-C14,丙烯酸甲酯的Spike值是三個反應(yīng)體系中最高的。通過鍵級曲線圖描繪了舊雙鍵斷裂,以及新鍵形成過程。成鍵指數(shù)表明,丙烯酸甲酯反應(yīng)體系的過渡態(tài)是“早期”過渡態(tài),可以更早的形成反應(yīng)復(fù)合物,導(dǎo)致活化能較小。最后通過電荷分析確定單體的活性,并通過反應(yīng)速率進一步證實丙烯酸甲酯反應(yīng)體系具有最小的活化能,反應(yīng)速率最快。體內(nèi)的止血是微創(chuàng)手術(shù)成功與否的關(guān)鍵之一。固體止血材料由于流動性差不能通過微創(chuàng)手術(shù)器械鞘管噴射進入體內(nèi),液體止血材料由于附著力低而導(dǎo)致無法粘附在組織。為了解決流動性和粘附性的矛盾,在第二章我們以自由基加成反應(yīng)為理論依據(jù),利用光引發(fā)劑與蔗糖單體在紫外照射下迅速固化成膜來實現(xiàn)止血。通過量子化學(xué)計算化學(xué)反應(yīng)勢壘、實時紅外模擬體外成膜、動物實驗觀察止血效果、細胞實驗考察原料細胞毒性等多方面實驗,考證了含有烯丙基蔗糖醚單體(SAE)和α-羥基酮引發(fā)劑(HMPP)混合配方作為新型止血材料的可行性。從密度泛函理論證實了SAE與HMPP屬于自由基加成反應(yīng),并具有所需的能量勢壘較小、反應(yīng)時間較短的優(yōu)點。粘度實驗和細胞毒性實驗表明,該配方具有一定的流動性、毒性相對低的優(yōu)點。雖然實時紅外的結(jié)果顯示最終轉(zhuǎn)換率不高,但是體內(nèi)止血實驗證實了SAE與HMPP混合材料在50秒內(nèi)就能在體內(nèi)成膜止血,并且不受血流量的影響。在微創(chuàng)止血方面較其他止血材料具有競爭優(yōu)勢。為了更好的探討光引發(fā)劑的光學(xué)特性,在第三章我們采用波函數(shù)分析方法研究新型肟酯引發(fā)劑的激發(fā)能量、分子軌道、電子躍遷密度矩陣。通過分子軌道研究發(fā)現(xiàn)OXE-1的能量帶隙比OXE-2小,反映了前者較后者易激發(fā)。電子躍遷密度矩陣圖顯示了OXE-1和OXE-2從基態(tài)躍遷到激發(fā)態(tài)主要都是苯環(huán)和羰基上的電子躍遷引起的。比較激發(fā)能可以知道單線態(tài)的激發(fā)能和重組能都大于三線態(tài),說明兩者的電子結(jié)構(gòu)在單線態(tài)時比三線態(tài)更穩(wěn)定。并且OXE-1與OXE-2具有相似的垂直激發(fā)能,說明兩者的激發(fā)過程的勢能面間隔相近。
[Abstract]:The free radical addition reaction is very important in UV curing. The splitting photoinitiator LEPs to the excited state under ultraviolet light, and then breaks the free radical. Benzoyl free radical is a common photolysis product. It is added to the acrylate monomer to form the primary free radical and then initiates the polymerization. At present, the free radical addition is added to the free radical. The study of reaction is mostly focused on the dynamics, and based on the transition state theory, there are few theoretical studies on the addition reaction of free radicals from energy, reaction rate and so on. There is no related literature to study the combination of free radical addition reaction to biological hemostat. The free radical addition reaction of benzoyl radical with amyl, allyl methyl ether and methyl acrylate three monomers. Through the analysis of energy and conformation changes, it is found that the activation energy of methyl acrylate is the smallest in the three reaction systems, which is due to the smaller deformation energy. The mechanism of free radical addition reaction is revealed by the interaction between the free radical and olefin monomer, and the existence of the weak interaction is proved by the visualization of the weak interaction. The weak interaction analysis found that the weak interaction of the three reaction systems came from the end C12-C14 and the acrylic acid. The Spike value of methyl ester is the highest in the three reaction systems. Through the bond grade curves, the fracture of the old double bond and the formation of the new bond are depicted. The bond index indicates that the transition state of the methyl acrylate reaction system is a "early" transition state, and the reaction complex can be formed earlier, and the activation energy is smaller. Finally, the single charge activation energy is small. Finally, the charge analysis is used to determine the monomer. The activity of the body and the reaction rate further confirm that the methyl acrylate reaction system has the smallest activation energy and the reaction rate is the fastest. The hemostasis in the body is one of the keys to the success of minimally invasive surgery. The solid hemostat can not be injected into the body by the minimally invasive surgical instrument sheath, and the liquid hemostat is attached to the body because of poor fluidity. In order to solve the contradiction between fluidity and adhesion, in order to solve the contradiction between fluidity and adhesion, in the second chapter, we use the free radical addition reaction as the theoretical basis, using the photoinitiator and the sucrose monomer to rapidly solidify into the membrane to achieve the hemostasis. In animal experiments, the effect of hemostasis was observed, and the cytotoxicity of raw material cells was examined by cell experiments. The feasibility of the mixture of Xi Bingji sucrose ether monomer (SAE) and alpha hydroxy ketone initiator (HMPP) as a new type of hemostat was tested. The density functional theory proved that SAE and HMPP are free radical addition reactions and have the required energy. The viscosity test and cytotoxicity test showed that the formula had a certain fluidity and relatively low toxicity. Although the real-time infrared results showed that the final conversion rate was not high, the internal hemostasis experiment in the body confirmed that the SAE and HMPP mixture could be hemostasis in the body within 50 seconds in the body. In order to better investigate the optical properties of photoinitiators, in the third chapter, we use wave function analysis to study the excitation energy, molecular orbital and electron transition density matrix of new oxime initiators in the third chapter. The energy band gap is smaller than that of OXE-2, which indicates that the former is easier to be excited than the latter. The electron transition density matrix diagram shows that the transition from the ground state to the excited state from the ground state to the excited state is mainly caused by the electron transition on the benzene ring and the carbonyl group. The excitation energy and the recombination energy of the single state can be known to be greater than the three linear state, indicating the electronic structure of the two. The singlet state is more stable than the three line state, and OXE-1 and OXE-2 have similar vertical excitation energy, indicating that the potential energy interval between them is similar.
【學(xué)位授予單位】:廣州醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R318.08
【參考文獻】
相關(guān)期刊論文 前10條
1 劉曉軍;苗鳳娟;李瑞;張存華;李奇楠;閆冰;;GeO分子激發(fā)態(tài)的電子結(jié)構(gòu)和躍遷性質(zhì)的組態(tài)相互作用方法研究[J];物理學(xué)報;2015年12期
2 姜龍;曾婭玲;蔡嘯宇;李魚;;基于含時密度泛函理論的對位鹵代二苯醚電子躍遷機理[J];發(fā)光學(xué)報;2014年05期
3 信晶;孫保民;朱恒毅;尹書劍;張振星;鐘亞峰;;煤焦邊緣模型異相還原NO的Mayer鍵級變化分析[J];煤炭學(xué)報;2014年04期
4 張真銘;王允;;微創(chuàng)手術(shù)治療食管癌的現(xiàn)狀[J];中國胸心血管外科臨床雜志;2014年02期
5 韋美菊;賈德強;陳飛武;;TiO_2基態(tài)和激發(fā)態(tài)的幾何結(jié)構(gòu)、激發(fā)能和偶極矩[J];物理化學(xué)學(xué)報;2013年07期
6 徐冰冰;聶俊;;光聚合現(xiàn)狀與展望[J];信息記錄材料;2012年05期
7 李學(xué)軍;孫園園;;不同生物止血材料研究進展及復(fù)合型止血材料的臨床應(yīng)用[J];中國組織工程研究與臨床康復(fù);2011年51期
8 黃鶯;雷志丹;張曉青;李龍;;密度泛函計算中基組的收斂現(xiàn)象:強成鍵體系CO分子[J];湖南師范大學(xué)自然科學(xué)學(xué)報;2011年05期
9 姜學(xué)松;印杰;;新型光引發(fā)劑體系及其應(yīng)用[J];高分子通報;2010年07期
10 宋國強;胡春青;王兵;袁惠一;張娜;;肟酯類光引發(fā)劑OXE-2的合成[J];精細化工;2009年10期
相關(guān)會議論文 前2條
1 聶俊;;光引發(fā)劑的新進展[A];全國輻射固化研討會2006論文集[C];2006年
2 盧天;;Multiwfn:多功能波函數(shù)分析程序[A];中國化學(xué)會第28屆學(xué)術(shù)年會第13分會場摘要集[C];2012年
,本文編號:1949168
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1949168.html