自成孔納米纖維支架的制備與電化學(xué)表面修飾研究
本文選題:PLLA + PCL ; 參考:《東華大學(xué)》2012年碩士論文
【摘要】:本文針對現(xiàn)有細(xì)胞支架制備方法中的不足以及PLLA力學(xué)性能的缺陷即質(zhì)硬而且韌性較差,缺乏柔性和彈性,研究了聚-L-乳酸(PLLA)復(fù)合支架的制備、改性及生物相容性。首次采用自成孔的方法即熱致相分離和相反轉(zhuǎn)技術(shù)相結(jié)合制備了具有三維孔隙結(jié)構(gòu)的PLLA/PCL復(fù)合多孔納米纖維支架;并采用電化學(xué)礦化技術(shù),對支架進(jìn)行表面改性以提高其生物相容性,構(gòu)建了具有生物活性的三維多孔納米纖維支架。主要研究內(nèi)容包括兩部分: 1.采用自成孔技術(shù)制備PLLA/PCL復(fù)合支架,研究了不同PLLA/PCL比例對復(fù)合支架孔隙率和形態(tài)的影響。發(fā)現(xiàn)添加與PLLA不相容的PCL可作為致孔劑和增強(qiáng)劑,不同PCL含量對于支架的多孔形貌和特性有顯著影響。掃描電子顯微鏡(SEM)觀察發(fā)現(xiàn),PLLA/PCL復(fù)合支架呈多孔納米纖維結(jié)構(gòu),纖維直徑小于200nm,孔徑分布在10μm-100μm之間;多孔形貌及孔徑隨著PCL含量的不同而不同。紅外光譜(FTIR)分析結(jié)果發(fā)現(xiàn),在不同比例的復(fù)合支架中均有PCL的特征峰,表明復(fù)合支架制備過程,PCL不僅作為致孔劑,還能作為支架的組成部分,從而改善PLLA支架的力學(xué)性能。力學(xué)性能測試發(fā)現(xiàn),PCL的添加在一定程度上提高了支架的力學(xué)性能,并且隨著PCL含量的增加而增加。另外,復(fù)合支架的孔隙率、溶脹性、體外降解性及熱學(xué)性能等,都會隨著PLLA/PCL比例的變化而改變。SEM觀察表明豬髖動脈內(nèi)皮細(xì)胞(PIECs)在純PLLA支架及PLLA/PCL復(fù)合支架上具有良好的黏附形貌,呈多角形扁平狀;采用MTT法測PIECs的黏附和增殖情況,結(jié)果表明PIECs在復(fù)合支架上具有很好的黏附和增殖能力,并且當(dāng)PLLA/PCL的比例為60:40時(shí),細(xì)胞的黏附和增殖情況明顯好于其他比例的復(fù)合支架。綜上,PLLA/PCL復(fù)合三維多孔支架具有良好的理化特性及生物相容性,有望作為組織工程支架應(yīng)用于組織修復(fù)等領(lǐng)域。 2.通過電化學(xué)礦化技術(shù)對PLLA/PCL復(fù)合支架進(jìn)行表面改性和修飾,并探究了將牛血清白蛋白(BSA)和羥基磷灰石(HA)協(xié)同礦化到三維多孔支架上的可能性。SEM觀察發(fā)現(xiàn),當(dāng)?shù)V化電壓為3V,電解液溫度為37℃時(shí),沉積的晶體結(jié)構(gòu)細(xì)膩,均勻分布在支架的孔壁上,且晶體呈細(xì)針狀,這種形態(tài)與天然骨組織成分羥基磷灰石(HA)形態(tài)類似。當(dāng)加入牛血清白蛋白后,沉積的晶體由針狀結(jié)構(gòu)轉(zhuǎn)變?yōu)槿~片狀結(jié)構(gòu)。FTIR結(jié)果顯示復(fù)合涂層中存在磷酸鈣鹽成分并出現(xiàn)了蛋白質(zhì)的氨基特征峰。X-射線衍射(XRD)圖譜分析證明,在礦化電壓為3V,電解液溫度為37℃下沉積的晶體成分主要為HA;體外細(xì)胞實(shí)驗(yàn)結(jié)果表明,大鼠前成骨細(xì)胞(MC3T3-E1)在電化學(xué)協(xié)同礦化BSA和HA的復(fù)合支架上具有良好的黏附和增殖能力及較高表達(dá)的堿性磷酸酶(ALP)活性和骨鈣素(OCN)含量,ALP的表達(dá)含量在培養(yǎng)到第7天時(shí)達(dá)到最高,是空白玻片的三倍,高達(dá)3.25pg/cell。OCN的含量隨著培養(yǎng)時(shí)期延長而提高,當(dāng)培養(yǎng)到14天時(shí)其含量明顯提高,是空白玻片的兩倍。因此,電化學(xué)礦化技術(shù)可成功應(yīng)用于在三維多孔納米纖維支架上進(jìn)行生物活性分子和無機(jī)物的協(xié)同礦化,從而得到具有一定生物活性的復(fù)合多孔納米纖維支架并有望應(yīng)用于骨組織損傷修復(fù)等領(lǐng)域。
[Abstract]:In this paper, the preparation, modification and biocompatibility of the poly -L- lactic acid (PLLA) composite scaffold are studied in view of the shortcomings of the existing scaffold preparation methods and the defects of the mechanical properties of PLLA, namely, hard and poor toughness, and the lack of flexibility and elasticity. PLLA/PCL composite porous nanofiber scaffolds with three-dimensional pore structure and electrochemical mineralization are used to improve the biocompatibility of the scaffolds to improve their biocompatibility. The three-dimensional porous nanofiber scaffolds with biological activity are constructed. The main contents of this study include two parts:
1. the effect of different PLLA/PCL ratios on the porosity and morphology of the composite scaffolds was studied by self pore forming technology. It was found that the addition of PCL incompatible with PLLA could be used as a pore forming agent and reinforcing agent. The content of different PCL content had a significant effect on the porous morphology and properties of the scaffold. The scanning electron microscope (SEM) observed, PLLA/P was found, PLLA/P was observed, PLLA/P The CL composite scaffold is a porous nanofiber structure with a diameter of less than 200nm and a diameter of 10 u M-100 mu m. The porous morphology and pore size are different with the PCL content. The results of infrared spectroscopy (FTIR) analysis show that the characteristic peak of PCL in the composite scaffold of different proportions shows that PCL is not only a cause of the preparation of the composite scaffold. The pore agent can also be used as a component of the scaffold to improve the mechanical properties of the PLLA stents. The mechanical properties test shows that the addition of PCL increases the mechanical properties of the stent to a certain extent, and increases with the increase of the PCL content. In addition, the porosity, swelling, in vitro degradation and thermal properties of the composite support will follow the PLLA/P. The change of CL ratio and changes in.SEM observation showed that the porcine hip artery endothelial cells (PIECs) had good adhesion morphology on the pure PLLA stent and PLLA/PCL composite scaffold. The adhesion and proliferation of PIECs were measured by MTT method. The results showed that PIECs had good adhesion and proliferation ability on the composite scaffold and when PLLA/P was in PLLA/P. When the ratio of CL is 60:40, the cell adhesion and proliferation is better than that of the other composite scaffolds. To sum up, the PLLA/PCL composite three-dimensional porous scaffold has good physical and chemical properties and biocompatibility. It is expected to be used as a tissue engineering scaffold in tissue repair and other fields.
2. the surface modification and modification of PLLA/PCL composite scaffold were carried out by electrochemical mineralization technology, and the possibility of.SEM observation on the possibility of CO mineralization of bovine serum albumin (BSA) and hydroxyapatite (HA) on the three-dimensional porous scaffold was found. When the mineralization voltage was 3V and the electrolyte temperature was 37 C, the crystal structure was fine and distributed uniformly in the branch. On the hole wall of the frame, the crystal is thin needle like, this form is similar to the natural bone tissue component hydroxyapatite (HA). After adding bovine serum albumin, the deposited crystal is transformed from acicular structure to leaf like structure,.FTIR results show that there is a calcium phosphate salt formation in the composite coating and the amino characteristic peak of protein.X- ray derivative appears in the composite coating. XRD atlas analysis showed that the crystal components deposited at the mineralization voltage of 3V and the electrolyte temperature at 37 C were mainly HA. In vitro cell experiment results showed that the rat anterior osteoblast (MC3T3-E1) had good adhesion and proliferation ability and high expression of alkaline phosphatase (ALP) on the composite scaffold of electrochemical CO mineralized BSA and HA. The content of sex and Osteocalcin (OCN), the expression of ALP reached the highest at seventh days, three times the blank slide, and the content of up to 3.25pg/cell.OCN increased with the incubation period. When the culture reached 14 days, its content was obviously improved, which was two times of the blank slide. The biomineralization of bioactive molecules and inorganic materials on the nanofiber scaffolds can be used to obtain a composite porous nanofiber scaffold with certain bioactivity and is expected to be applied to the repair of bone tissue damage.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:R318.08
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王喜云;王遠(yuǎn)亮;;生物材料的生物學(xué)評價(jià)方法研究進(jìn)展[J];北京生物醫(yī)學(xué)工程;2007年01期
2 全大萍,廖凱榮,盧澤儉,王海華;聚DL-丙交酯/羥基磷灰石(PDLLA/HA)復(fù)合材料:(Ⅳ)HA表面處理及PDLLA界面作用研究[J];復(fù)合材料學(xué)報(bào);2001年02期
3 王華林,盛敏剛,史鐵鈞,李延紅,翟林峰;PLA及PLA復(fù)合材料降解性能研究進(jìn)展[J];高分子材料科學(xué)與工程;2004年06期
4 吳林波,丁建東;組織工程三維多孔支架的制備方法和技術(shù)進(jìn)展[J];功能高分子學(xué)報(bào);2003年01期
5 戴紅蓮,李世普,閆玉華,李小溪,沈春華;β-磷酸三鈣多孔生物陶瓷植入體內(nèi)后的組成變化[J];硅酸鹽學(xué)報(bào);2004年07期
6 趙瑾,袁曉燕,姚康德;組織工程多孔支架制備技術(shù)進(jìn)展[J];化工進(jìn)展;2002年09期
7 曹誼林;組織工程學(xué)在外科領(lǐng)域中的應(yīng)用[J];臨床外科雜志;2005年01期
8 王栩,鄔于川,夏世平,高燕,李程旭;MTT法進(jìn)行活菌計(jì)數(shù)的方法學(xué)探討[J];瀘州醫(yī)學(xué)院學(xué)報(bào);2002年04期
9 孔麗君;敖強(qiáng);奚靜;張玲;公衍道;趙南明;張秀芳;;MC 3T3-E1細(xì)胞在納米羥基磷灰石/殼聚糖復(fù)合支架上的增殖和分化[J];生物工程學(xué)報(bào);2007年02期
10 梁衛(wèi)東,石應(yīng)康;細(xì)胞培養(yǎng)法評價(jià)生物材料生物相容性研究進(jìn)展[J];生物醫(yī)學(xué)工程學(xué)雜志;1999年01期
相關(guān)碩士學(xué)位論文 前2條
1 王華楠;多孔納米羥基磷灰石/聚酰胺66復(fù)合材料骨組織工程支架的研究[D];四川大學(xué);2007年
2 王琳婷;絲膠蛋白/羥基磷灰石復(fù)合支架材料的制備研究[D];浙江大學(xué);2010年
,本文編號:1933172
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1933172.html