基于磁流變效應(yīng)的四連桿假肢膝關(guān)節(jié)及其構(gòu)成的下肢假肢的研究
本文選題:假肢膝關(guān)節(jié) + 四連桿。 參考:《重慶大學(xué)》2016年博士論文
【摘要】:下肢假肢是恢復(fù)膝上截肢者肢體功能和外觀的主要工具,是膝上截肢者返回社會(huì)生活的重要輔助裝置。假肢膝關(guān)節(jié)作為下肢假肢最重要的組成部分,不但需要滿足基本的行走功能需求,而且更需要模擬健康人的自然擺動(dòng),實(shí)現(xiàn)與穿戴者剩余肢體的運(yùn)動(dòng)協(xié)調(diào)。目前相對(duì)于采用氣壓式和液壓式阻尼器的智能假肢膝關(guān)節(jié),基于磁流變效應(yīng)的假肢膝關(guān)節(jié)具有響應(yīng)快、阻尼連續(xù)可控、能耗低等優(yōu)點(diǎn),已成為智能假肢膝關(guān)節(jié)研究的熱點(diǎn)方向之一。然而,已有的基于磁流變效應(yīng)的假肢膝關(guān)節(jié)通常是將商業(yè)化的磁流變阻尼器直接安裝在假肢膝關(guān)節(jié)上面,導(dǎo)致磁流變阻尼器不但占用空間較大,而且在行走過程中作相對(duì)于小腿假肢部件的來回?cái)[動(dòng),從而對(duì)假肢膝關(guān)節(jié)的步態(tài)質(zhì)量產(chǎn)生一定程度的影響。因此,研究磁流變阻尼器在假肢膝關(guān)節(jié)上的集成原理與方法以及相應(yīng)的控制方法具有重要的學(xué)術(shù)意義及實(shí)用價(jià)值。為了解決上述問題,本文通過將四連桿機(jī)構(gòu)的上、下連桿分別與磁流變阻尼器的活塞桿和外缸體一體化提出并實(shí)現(xiàn)了一種新型的基于磁流變效應(yīng)的四連桿假肢膝關(guān)節(jié)(Magnetorheological effect based four-bar linkage prosthetic knee,MRFLPK)的原理與結(jié)構(gòu),并開發(fā)了原型樣機(jī)。采用開發(fā)的MRFLPK的原型樣機(jī)開發(fā)了基于磁流變效應(yīng)的下肢假肢(MR lower limb prosthesis,MRLLP)。在此基礎(chǔ)上,仿真分析了MRLLP行走過程中MRFLPK的磁流變阻尼器所需要的阻尼力,研究了實(shí)現(xiàn)MRFLPK的小腿擺動(dòng)控制的原理和方法。建立了MRLLP的快速控制原型系統(tǒng)和實(shí)驗(yàn)測(cè)試系統(tǒng),在此基礎(chǔ)上,對(duì)MRFLPK進(jìn)行了實(shí)驗(yàn)測(cè)試和分析。本文的主要研究工作和創(chuàng)新點(diǎn)可以歸納為以下六個(gè)方面:1.為了充分利用四連桿機(jī)構(gòu)準(zhǔn)確模擬人體膝關(guān)節(jié)瞬心曲線的特點(diǎn)和磁流變阻尼器可控阻尼的特點(diǎn),通過將四連桿機(jī)構(gòu)的上、下連桿分別與磁流變阻尼器的活塞桿和外缸體一體化提出并實(shí)現(xiàn)了一種MRFLPK的原理與結(jié)構(gòu),其中,磁流變阻尼器的外缸體上端直接集成在四連桿機(jī)構(gòu)的下連桿下部,磁流變阻尼器的活塞桿通過擺動(dòng)連桿與四連桿機(jī)構(gòu)的上連桿連接。集成的磁流變阻尼器采用雙出桿結(jié)構(gòu)型式;诖,設(shè)計(jì)和開發(fā)了MRFLPK的原型樣機(jī)。采用提出并實(shí)現(xiàn)的MRFLPK,開發(fā)了一種MRLLP,包括開發(fā)的MRFLPK的原型樣機(jī)、小腿假肢部件、腳假肢部件和角度傳感器。2.建立了MRFLPK及其構(gòu)成的MRLLP的運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)模型。根據(jù)建立的運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)模型,仿真分析了MRLLP行走過程中MRFLPK的磁流變阻尼器所需要的阻尼力。通過剛體動(dòng)力學(xué)仿真軟件ADAMS,對(duì)MRLLP的3D機(jī)械幾何模型行走過程中MRFLPK的磁流變阻尼器所需要的阻尼力進(jìn)行了仿真。通過3D仿真結(jié)果與動(dòng)力學(xué)模型仿真分析結(jié)果,分析了MRFLPK的磁流變阻尼器在行走時(shí)需要的期望阻尼力。3.為了控制MRFLPK,采用基于運(yùn)動(dòng)參考曲線的MRFLPK軌跡跟蹤控制原理。其中,為了提供MRFLPK的運(yùn)動(dòng)參考曲線,提出了一種基于Rayleigh振蕩器的運(yùn)動(dòng)參考曲線生成器(Rayleigh oscillator based reference curve generator,RORCG)的原理。根據(jù)RORCG原理建立了實(shí)驗(yàn)系統(tǒng),對(duì)RORCG的有效性進(jìn)行了實(shí)驗(yàn)驗(yàn)證。并采用計(jì)算力矩加PD反饋控制算法用于軌跡跟蹤控制。4.為了測(cè)試MRFLPK,建立了MRLLP的快速控制原型系統(tǒng),包括MRLLP、控制系統(tǒng)、角度傳感器和可控電流源。實(shí)驗(yàn)時(shí),控制系統(tǒng)由實(shí)時(shí)仿真系統(tǒng)(型號(hào):d SPACE DS1103)建立。角度傳感器傳感MRFLPK的擺動(dòng)角度。實(shí)時(shí)仿真系統(tǒng)控制可控電流源向磁流變阻尼器輸出控制電流,改變磁流變阻尼器的阻尼力從而實(shí)現(xiàn)MRFLPK的擺動(dòng)角度控制。5.為了測(cè)試MRFLPK,開發(fā)了模擬人體下肢運(yùn)動(dòng)的大腿模擬器。在此基礎(chǔ)上,提出了一種用于模擬日常生活步態(tài)的受生物誘導(dǎo)的假肢膝關(guān)節(jié)實(shí)驗(yàn)測(cè)試系統(tǒng)(Bio-inspired motion platform system for testing prosthetic knees,BIMPS)的原理,并開發(fā)了原型樣機(jī)。其中,BIMPS采用生物誘導(dǎo)傳感器實(shí)時(shí)獲取測(cè)試者的大腿運(yùn)動(dòng)信息并作為運(yùn)動(dòng)參考信號(hào)實(shí)現(xiàn)大腿模擬器跟蹤測(cè)試者大腿運(yùn)動(dòng)的生物誘導(dǎo)控制。對(duì)大腿模擬器跟蹤理想的參考運(yùn)動(dòng),以及大腿模擬器實(shí)時(shí)跟蹤測(cè)試者大腿日常運(yùn)動(dòng)的能力進(jìn)行了實(shí)驗(yàn)測(cè)試和分析。6.基于建立的MRLLP快速控制原型系統(tǒng)和實(shí)驗(yàn)測(cè)試系統(tǒng),從三個(gè)方面測(cè)試和分析了MRFLPK的擺動(dòng)角度。測(cè)試了MRFLPK在不同恒定電流控制下的擺動(dòng)角度;基于大腿模擬器,測(cè)試了MRFLPK在計(jì)算力矩加PD反饋控制算法控制下的擺動(dòng)角度;基于BIMPS,測(cè)試了MRFLPK在計(jì)算力矩加PD反饋控制算法控制下的加速和減速運(yùn)動(dòng)時(shí)的擺動(dòng)角度。實(shí)驗(yàn)結(jié)果表明,在計(jì)算力矩加PD反饋控制算法控制下的MRFLPK在日常生活中能夠?qū)崿F(xiàn)自然的運(yùn)動(dòng)步態(tài)。本文的研究工作為研發(fā)高性能的MRFLPK及MRLLP奠定了基礎(chǔ)。
[Abstract]:Lower limb prosthesis is the main tool to restore the function and appearance of the amputees of the knee. It is an important auxiliary device for the amputee to return to the social life. As the most important part of the lower limb prosthesis, the prosthetic knee joint not only needs to meet the basic needs of the walking function, but also needs to simulate the natural swing of the healthy people and realize the wearer. At present, compared with the intelligent prosthetic knee joint with pneumatic and hydraulic dampers, the prosthetic knee joint based on magnetorheological effect has the advantages of quick response, continuous controllable damping and low energy consumption, which has become one of the hot spots in the research of intelligent prosthetic knee joint. However, the existing magnetorheological effect is false. The joints of the limbs and knees usually install the commercialized magnetorheological dampers directly on the knee joints of the prosthetic limbs, causing the magnetorheological damper not only to occupy a large space but also to swing back and forth relative to the leg part of the leg during the walking process, so that the gait quality of the prosthesis and knee joint is affected to a certain extent. Therefore, the magnetorheological study is studied. The integration principle and method of the damper on the knee joint of the prosthetic limb and the corresponding control method have important academic significance and practical value. In order to solve the above problems, a new type of magnetic field based on the upper and lower connecting rod of the four link mechanism and the piston rod and the outer cylinder of the magnetorheological damper is put forward and realized. The principle and structure of the rheological effect of the four link Magnetorheological effect based four-bar linkage prosthetic knee, MRFLPK, and the prototype prototype are developed. A lower limb prosthesis based on the magnetorheological effect (MR lower limb) is developed with the prototype prototype developed. The damping force required by the magnetorheological damper of MRFLPK during MRLLP walking is studied. The principle and method of controlling the leg swing of MRFLPK are studied. A rapid control prototype system and an experimental test system of MRLLP are established. On this basis, the experimental test and analysis of MRFLPK are carried out. The main research work and innovation point of this paper can be found. The following six aspects are summed up as follows: 1. in order to make full use of the characteristics of the instantaneous center curve of the knee joint of the human body and the characteristics of the controllable damping of the magnetorheological damper, the principle and the conclusion of a kind of MRFLPK are put forward and realized by the integration of the upper and lower connecting rods of the four rod mechanism with the piston and the outer cylinder of the magnetorheological damper. The upper end of the outer cylinder of the magnetorheological damper is directly integrated into the lower connecting rod of the four connecting rod mechanism, and the piston rod of the magnetorheological damper is connected with the upper connecting rod of the four connecting rod mechanism by the swinging rod. The integrated magnetorheological damper adopts the double rod structure type. Based on this, a prototype prototype of MRFLPK is designed and developed. And the implementation of MRFLPK, developed a kind of MRLLP, including the prototype prototype of the developed MRFLPK, the leg prosthesis components, the foot prosthesis components and the angle sensor.2., established the MRFLPK and the kinematic and dynamic model of the MRLLP of the MRFLPK. According to the established kinematics and dynamics model, the magnetorheological resistance of MRFLPK during MRLLP walking was analyzed. The damping force required for the Nei device is simulated by the rigid body dynamic simulation software ADAMS. The damping force required for the magnetorheological damper of MRFLPK during the walking process of the 3D mechanical model of the MRLLP is simulated. The expectation of the magnetorheological damper for the MRFLPK's magnetorheological damper in walking is analyzed by the simulation results of the 3D simulation and the dynamic model. In order to control MRFLPK, the damping force.3. uses the MRFLPK trajectory tracking control principle based on the motion reference curve. In order to provide the motion reference curve of the MRFLPK, a motion reference curve generator based on the Rayleigh oscillator (Rayleigh oscillator based reference curve generator, RORCG) is proposed. An experimental system is established, and the effectiveness of RORCG is verified experimentally. The calculation torque plus PD feedback control algorithm is used for trajectory tracking control.4. to test MRFLPK, and a rapid control prototype system for MRLLP is established, including MRLLP, control system, angle sensor and controllable current source. D SPACE DS1103) set up. The angle sensor sensing the swing angle of the MRFLPK. The real-time simulation system controls the controlled current source to output the control current to the magnetorheological damper and changes the damping force of the magnetorheological damper to realize the MRFLPK swing angle control.5. in order to test the MRFLPK, and develop the thigh simulator to simulate the movement of the lower limb of the human body. On this basis, a biological induced prosthetic knee joint test test system (Bio-inspired motion platform system for testing prosthetic knees, BIMPS) is proposed to simulate daily life gait, and a prototype prototype is developed, in which BIMPS uses a raw material induction sensor to obtain the thigh movement of the tester in real time. Information and as a motion reference signal to achieve the thigh motion control of the thigh motion of the thigh simulator, tracking the ideal reference motion for the thigh simulator, and the ability of the thigh simulator to track the daily motion of the thigh in the test and analysis of the.6. based MRLLP rapid control prototype system based on the test and analysis. The experimental test system tests and analyzes the swing angle of MRFLPK from three aspects and tests the swing angle of MRFLPK under the control of different constant current. Based on the leg simulator, the swing angle of MRFLPK under the control of calculation torque plus PD feedback control algorithm is tested. Based on BIMPS, the calculation moment and PD feedback control of MRFLPK are tested. The experimental results show that MRFLPK can achieve natural motion gait in daily life under the control of calculation torque plus PD feedback control algorithm. The research work of this paper lays a foundation for developing high performance MRFLPK and MRLLP.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:R318.17
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 尚昆;丁皓;陳齊歐;沈力行;;假肢步態(tài)實(shí)驗(yàn)平臺(tái)設(shè)計(jì)[J];中國組織工程研究;2012年04期
2 ;The Knee Joint Design and Control of Above-knee Intelligent Bionic Leg Based on Magneto-rheological Damper[J];International Journal of Automation & Computing;2010年03期
3 ;Survey of locomotion control of legged robots inspired by biological concept[J];Science in China(Series F:Information Sciences);2009年10期
4 關(guān)新春;郭鵬飛;歐進(jìn)萍;;磁流變阻尼器的多目標(biāo)優(yōu)化設(shè)計(jì)與分析[J];工程力學(xué);2009年09期
5 徐祖義;;我國假肢矯形器行業(yè)人才需求與培養(yǎng)的探討[J];管理觀察;2009年09期
6 文麗;酈鳴陽;喻洪流;趙改平;沈力行;;下肢假肢步態(tài)試驗(yàn)機(jī)的設(shè)計(jì)[J];中國組織工程研究與臨床康復(fù);2008年52期
7 張今瑜;吳愛明;張立勛;;一種步態(tài)測(cè)量方法及其在康復(fù)應(yīng)用中的實(shí)驗(yàn)研究[J];醫(yī)療裝備;2008年02期
8 賀光輝;譚冠政;曾慶冬;鐘金;;智能仿生人工腿位置伺服控制系統(tǒng)的設(shè)計(jì)[J];計(jì)算機(jī)測(cè)量與控制;2007年01期
9 叢德宏;徐心和;;磁流變液智能假腿的擺動(dòng)相控制[J];系統(tǒng)仿真學(xué)報(bào);2006年S2期
10 朱應(yīng)順;龔興龍;李輝;張培強(qiáng);;磁流變液剪切屈服應(yīng)力的數(shù)值分析[J];中國礦業(yè)大學(xué)學(xué)報(bào);2006年04期
相關(guān)博士學(xué)位論文 前2條
1 王斌銳;異構(gòu)雙腿行走機(jī)器人研究與開發(fā)[D];東北大學(xué);2005年
2 楊年峰;人體運(yùn)動(dòng)協(xié)調(diào)規(guī)律及其參數(shù)化描述[D];清華大學(xué);2001年
,本文編號(hào):1840008
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1840008.html