復(fù)合BMSCs包芯結(jié)構(gòu)骨支架材料修復(fù)兔橈骨骨缺損的實(shí)驗(yàn)研究
本文選題:包芯結(jié)構(gòu) + Ⅰ型膠原; 參考:《第四軍醫(yī)大學(xué)》2012年博士論文
【摘要】:骨科臨床上造成大段骨缺損的疾病非常常見,例如:嚴(yán)重的創(chuàng)傷、骨質(zhì)疏松病人的骨折、腫瘤、肌肉骨骼系統(tǒng)的先天性畸形等。治療上述疾病需要切除病損的骨質(zhì),必然導(dǎo)致骨的大段缺損,骨缺損后的重建問題成為治療的最大挑戰(zhàn)。近些年,骨組織工程不斷取得突破性進(jìn)展,逐漸成為治療大段骨缺損最有前景的方法。骨組織工程主要包括3個(gè)主要因素,其中骨支架材料作為種子細(xì)胞和活性因子的載體,為新生骨的生成提供支撐,成為骨組織工程最關(guān)鍵的一個(gè)因素。合適的結(jié)構(gòu)和物理性能以及良好的生物相容性是作為理想的骨支架材料兩個(gè)最重要的要求:作為臨時(shí)的支撐結(jié)構(gòu),骨支架材料決定新生骨最終的生成形狀,,并影響復(fù)合在支架材料上的細(xì)胞間的相互作用,支架材料表面的親水性和粗糙程度等不同,在其表面生長的細(xì)胞也會(huì)表現(xiàn)出不同的生物活性。 在以前的研究中,通過低溫成型技術(shù),我們已經(jīng)制備出具有三維結(jié)構(gòu)的PLGA/β-TCP復(fù)合支架材料,而且通過體內(nèi)和體外實(shí)驗(yàn)均已經(jīng)證實(shí)PLGA/β-TCP復(fù)合支架材料具有良好的加工和成型特性、較高的空隙率、良好的機(jī)械強(qiáng)度和合適的降解速度,能夠滿足骨組織工程理想支架材料的要求。但是,PLGA/β-TCP復(fù)合支架材料表面具有強(qiáng)烈的疏水性,不利于細(xì)胞的粘附、增殖和成骨分化,大大影響了其作為支架材料的修復(fù)能力。支架材料具有較好的親水性和良好的生物相容性,不但可以確保細(xì)胞在支架材料表面的粘附、增殖和分化,而且能夠促進(jìn)氧氣和細(xì)胞必須的營養(yǎng)物質(zhì)順利進(jìn)入支架材料,這對(duì)于骨缺損的成功修復(fù)至關(guān)重要。因此,為了使PLGA/β-TCP復(fù)合支架材料更適合細(xì)胞的粘附、增殖和分化,改變材料的表面特性非常重要。 研究證實(shí),多孔支架材料表面覆蓋一層膠原以后,材料的吸水率會(huì)得到有效提高,而且有研究表明,骨髓基質(zhì)干細(xì)胞如果在I型膠原上培養(yǎng),其粘附、增殖和成骨分化能力也會(huì)得到顯著提高;谝陨显,我們制備出了內(nèi)PLGA/β-TCP外I型膠原的包芯結(jié)構(gòu)骨支架材料,此材料內(nèi)層為PLGA/β-TCP復(fù)合支架材料,在其表面覆蓋一層I型膠原。本實(shí)驗(yàn)主要包括以下幾部分的研究: 1基于仿生學(xué)原理,模擬人體骨組織真實(shí)結(jié)構(gòu),結(jié)合低溫沉積技術(shù),構(gòu)建仿生結(jié)構(gòu)組織工程骨構(gòu)建修復(fù)方案,開發(fā)可控的環(huán)形套管噴頭,通過快速成型的方法,制造出所需的材料、結(jié)構(gòu)、細(xì)胞分布高度仿生的復(fù)雜的三維結(jié)構(gòu)骨支架-包芯結(jié)構(gòu)骨支架材料。 2以PLGA/β-TCP復(fù)合支架材料作為對(duì)照組,通過體外和骨髓基質(zhì)干細(xì)胞(BMSCs)共培養(yǎng)的觀察實(shí)驗(yàn),對(duì)包芯結(jié)構(gòu)骨支架材料的物理性能和生物相容性進(jìn)行評(píng)價(jià)。外觀形態(tài)通過掃描電鏡觀測;物理性能通過如下指標(biāo)測定:孔隙率、孔徑、壓縮強(qiáng)度和楊氏模量;親水性通過吸水率評(píng)價(jià);骨髓基質(zhì)干細(xì)胞在支架材料上的粘附率通過細(xì)胞計(jì)數(shù)測定,增殖率通過MTT方法測定,成骨能力通過堿性磷酸酶活性的檢測進(jìn)行評(píng)價(jià);細(xì)胞在支架材料上的生長情況通過掃描電鏡觀測;實(shí)驗(yàn)結(jié)果證實(shí),包芯結(jié)構(gòu)骨支架材料和對(duì)照組都有良好的物理性能,包芯結(jié)構(gòu)骨支架材料的親水性較對(duì)照組顯著提高(p0.01),細(xì)胞在包芯結(jié)構(gòu)骨支架材料上的粘附、增值及成骨分化能力明顯優(yōu)于(p0.05)對(duì)照組。 3兔橈骨大段骨缺損修復(fù)實(shí)驗(yàn):把各組支架材料和骨髓基質(zhì)干細(xì)胞復(fù)合,隨后植入到兔橈骨大段骨缺損模型里進(jìn)行兔橈骨骨缺損修復(fù)的對(duì)比研究。通過X線、MicroCT、組織學(xué)和熒光雙標(biāo)等方法觀察支架材料的成骨情況、降解情況和修復(fù)兔橈骨大段骨缺損的情況;實(shí)驗(yàn)結(jié)果證實(shí),48周后,包芯結(jié)構(gòu)骨支架材料在骨缺損部位完全降解,骨塑型完成,成功修復(fù)了兔橈骨大段骨缺損,而且支架材料的降解速度和成骨速度匹配良好,相對(duì)于PLGA/β-TCP復(fù)合支架材料,包芯結(jié)構(gòu)骨支架材料表現(xiàn)出更好的成骨活性和修復(fù)大段骨缺損的能力。 包芯結(jié)構(gòu)骨支架材料具有良好的物理性能及生物相容性,在復(fù)合BMSCs的條件下,能很好的修復(fù)兔橈骨大段骨缺損,包芯結(jié)構(gòu)骨支架材料作為骨組織工程理想的支架材料,具有良好的臨床應(yīng)用前景。
[Abstract]:The Department of orthopedics clinical cause of large bone defect diseases, such as severe trauma, patients with osteoporosis fracture, tumor, congenital malformation of the musculoskeletal system. The treatment of these diseases requires removal of bone, will inevitably lead to the large segment defect of bone, reconstruction of bone defect after treatment has become the greatest challenge in recent years, bone tissue engineering has made breakthrough progress, has gradually become a method for treatment of large bone defects. The most promising bone tissue engineering mainly includes 3 main factors, including bone scaffold material as the carrier of seed cells and active factors, to provide support for the formation of new bone, become one of the most critical factor of bone tissue engineering. Appropriate structure and physical properties and good biocompatibility as bone scaffolds are two of the most important requirements: as a temporary support structure, bone scaffold materials The final generation form of new bone is determined, and the cell interaction on composite scaffolds is affected. The hydrophilic and roughness of the scaffolds are different. The cells grown on the surface also show different biological activities.
In a previous study, through the low temperature molding technology, we have prepared the PLGA/ beta -TCP composite scaffold has a three-dimensional structure, and through in vivo and in vitro experiments have confirmed that PLGA/ beta -TCP composite scaffolds have good characteristics of processing and molding, high void rate, good mechanical strength and appropriate degradation speed, can meet the ideal bone tissue engineering scaffold material requirements. However, with the strong hydrophobic surface of PLGA/ beta -TCP composite scaffold material, is not conducive to cell adhesion, proliferation and osteogenic differentiation, greatly affects the ability of the repair scaffold. Scaffold has good compatibility and good hydrophilicity life, not only can ensure the cells in the scaffold surface adhesion, proliferation and differentiation, but also can promote the oxygen and nutrients necessary to successfully enter the cell scaffold material for bone defect, this Successful repair is critical. Therefore, in order to make PLGA/ beta -TCP composite scaffolds more suitable for cell adhesion, proliferation and differentiation, it is very important to change the surface properties of materials.
The research confirmed that after surface covered with a layer of collagen scaffold material, the water absorption rate can be effectively improved, and studies have shown that bone marrow stromal stem cells cultured in collagen type I if, on the adhesion, proliferation and osteogenic differentiation ability can be improved. Based on the above reasons, the core structure of bone scaffold materials we prepared the PLGA/ beta -TCP type I collagen, the inner layer of PLGA/ beta -TCP composite scaffold, on its surface covered with a layer of type I collagen. This study mainly includes the following parts of the research:
1 based on the principle of bionics, simulate the structure of human bone tissue, combined with low temperature deposition technology, biomimetic structure construction of tissue engineered bone repair scheme, a ring sleeve nozzle developed controllable, through the method of rapid prototyping and manufacturing the required materials, structure, three-dimensional structure of bone scaffold complex cells distributed highly bionic core the structure of bone scaffold materials.
2 to PLGA/ beta -TCP composite scaffolds as control group by in vitro and bone marrow stromal stem cells (BMSCs) were co cultured, the core structure of bone scaffold material physical properties and biocompatibility were evaluated. Morphology was observed by scanning electron microscope; physical properties through the following indexes: the porosity, pore size. The compression strength and modulus; hydrophilic by water absorption rate; bone marrow stromal cell counts were determined by cell adhesion on scaffolds was determined by the MTT method, the proliferation rate, evaluate the osteogenic ability by alkaline phosphatase activity assay; cell growth in the scaffold by SEM observation; experimental results confirmed that the core structure of bone scaffold materials and the control group have good physical properties, hydrophilic core structure of bone scaffold was significantly higher than the control group (P0.01), fine The adhesion, value added and osteogenic differentiation of the cell on the bone scaffold material of the core structure were obviously better than that of the control group (P0.05).
3 segmental bone defect repair experiment: the group of scaffold materials and bone marrow stem cells combined, then implanted into the segmental bone defect model in the comparative study of repairing bone defect of rabbit radius. By X-ray, MicroCT, augementation histological and fluorescent double labeling methods such as observation of scaffold, degradation and in repairing segmental bone defect; experimental results show that, after 48 weeks, completely degraded in the bone defect site core structure of bone scaffold material package, bone modeling completed, the repair of segmental bone defect, and the degradation rate of scaffold materials and bone formation rate, good, relative to the PLGA/ beta -TCP composite scaffolds, core structure scaffolds exhibit better osteogenic activity and repair of large segmental bone defects.
The core structure bone scaffold material has good physical and biocompatibility. Under the condition of compound BMSCs, it can repair the large radius bone defect of rabbit well. The core structure bone scaffold material is an ideal scaffold material for bone tissue engineering. It has good clinical application prospect.
【學(xué)位授予單位】:第四軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2012
【分類號(hào)】:R318.08
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉雷;李起鴻;唐康來;楊柳;簡月奎;;異種脫蛋白組織工程骨支架材料的制備及理化特性研究[J];第三軍醫(yī)大學(xué)學(xué)報(bào);2007年01期
2 王紅梅;陳慶華;潘興華;龐榮清;丑修建;;羥基磷灰石/β-磷酸三鈣/海藻酸鈉復(fù)合多孔支架的制備與研究[J];佛山陶瓷;2006年03期
3 張華林;陳治清;;羊毛角蛋白作為骨組織工程支架材料的研究進(jìn)展[J];國際口腔醫(yī)學(xué)雜志;2007年03期
4 沈干,汪錚,叢笑倩,曹誼林;組織工程中的新型種子細(xì)胞——胚胎干細(xì)胞[J];國外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊(cè);2001年03期
5 馬秦,毛天球,劉寶林,戴毅敏,韓亮;rhBMP-2、膠原、珊瑚復(fù)合骨誘導(dǎo)骨形成生物活性的實(shí)驗(yàn)研究[J];華西口腔醫(yī)學(xué)雜志;2000年02期
6 陳偉良,藕小平,王建廣,楊朝暉,李海剛;人頜骨骨膜成骨細(xì)胞復(fù)合異體部分脫鈣骨的成骨實(shí)驗(yàn)研究[J];口腔頜面外科雜志;2004年02期
7 陳鵬;毛天球;劉冰;岳進(jìn);侯銳;牛麗娜;焦凱;;納米羥基磷灰石復(fù)合膠原材料負(fù)載骨髓基質(zhì)干細(xì)胞修復(fù)顱骨極限缺損的實(shí)驗(yàn)研究[J];臨床口腔醫(yī)學(xué)雜志;2005年12期
8 張晨,高景恒;組織工程的提出及其研究現(xiàn)狀[J];實(shí)用美容整形外科;1996年01期
9 朱丹華;舒曉春;;骨髓間充質(zhì)干細(xì)胞成骨分化的潛能和影響因素[J];實(shí)用醫(yī)學(xué)雜志;2009年15期
10 姚暉,杜昶,楊韶華,崔福齋,雷濤;納米羥晶/膠原仿生骨修復(fù)家兔顱頜骨缺損的實(shí)驗(yàn)研究[J];透析與人工器官;2000年02期
本文編號(hào):1738323
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1738323.html