近紅外靜脈圖像識別及處理算法研究
本文選題:近紅外技術 + 靜脈成像�。� 參考:《西安科技大學》2017年碩士論文
【摘要】:靜脈穿刺是現(xiàn)代醫(yī)療技術中最常見的一種醫(yī)療手段,廣泛應用于醫(yī)療行業(yè)中,包括靜脈注射、靜脈輸液、靜脈采血與輸血等。靜脈穿刺的首要條件是能夠觀察到較為清晰的靜脈血管,而現(xiàn)實生活中由于患者個體皮膚顏色、靜脈深淺以及脂肪厚度不同的影響,常常造成靜脈穿刺失誤,過度依賴醫(yī)護人員的經驗。因此,研究靜脈圖像識別及處理算法并用于輔助靜脈穿刺等醫(yī)療應用領域具有很重要的實際應用價值。利用近紅外光線的敏感性,可得到近紅外靜脈圖像,但原始圖像存在光照不均勻、對比度低、邊緣不夠清晰等問題,原始圖像不能直接應用于輔助靜脈穿刺,本文通過搭建近紅外靜脈圖像采集裝置,采集靜脈圖像,并運用改進圖像處理算法進行處理,提取了靜脈邊緣圖像,又提出了應用灰度對應方法測量手背靜脈血管皮下深度的測量方法。本課題首先利用靜脈及周圍組織對近紅外光線不同程度的吸收與反射原理,搭建并完善基于FPGA的非介入式靜脈成像裝置,包括設計裝置固定支架、改裝雙層亞克力光學擴散板、加裝近紅外濾光片,然后通過研究靜脈圖像采集條件,將采集到的較為清晰的近紅外靜脈圖像傳輸?shù)接嬎銠C系統(tǒng),再對圖像做進一步的實時處理。在圖像處理時,一是提出自動提取ROI感興趣區(qū)域算法,便于對提取的靜脈圖像進行濾波去噪、圖像增強和邊緣檢測;二是提出了改進算法:限制性中值濾波去噪算法、基于冪律變換的直方圖均衡化對比度增強算法、基于Otsu閾值分割的邏輯運算邊緣檢測算法;處理效果顯示改進算法提取到了清晰的靜脈邊緣;三是通過圖像質量評價標準對改進算法做出評價,評價結果表明改進算法與傳統(tǒng)算法比較具有一定的優(yōu)勢,改進算法簡單靈活,其處理結果達到預期效果;四是提出了通過灰度對應方法測量人體手背靜脈血管皮下深度的測量方法。通過自行設計制作的人體手背靜脈模型,將手背模型圖像的靜脈灰度值與手背模型靜脈血管皮下深度值進行標定、曲線擬合及校準,最終可定量的給出手背靜脈血管皮下深度的直觀差異,并且對測得血管深度進行實時的標注,方便醫(yī)護人員進行靜脈穿刺時參考判斷,達到輔助醫(yī)療應用目的。
[Abstract]:Venipuncture is the most common medical method in modern medical technology. It is widely used in medical industry, including intravenous injection, intravenous infusion, venous blood collection and blood transfusion.The primary condition of venipuncture is to be able to observe a clearer vein vessel, but in real life, due to the influence of the skin color, the depth of vein and the thickness of fat, the venipuncture is often caused by the mistake of venipuncture.Excessive reliance on the experience of health care workers.Therefore, it is of great practical value to study the algorithms of vein image recognition and processing and to apply them to the medical applications such as venipuncture.The near infrared vein image can be obtained by using the sensitivity of near infrared ray, but the original image has some problems, such as uneven illumination, low contrast and not clear edge, so the original image can not be directly applied to assist venipuncture.In this paper, a near infrared vein image acquisition device is built to collect vein image, and an improved image processing algorithm is used to extract the vein edge image.A method for measuring the subcutaneous depth of the dorsal hand vein is proposed.Based on the principle of the absorption and reflection of near-infrared light from veins and surrounding tissues, a non-interventional venous imaging device based on FPGA is built and perfected, including the design of a fixed support and the modification of a double-layer subcrine optical diffusion plate.The NIR filter is added, and then the clear NIR venous image is transmitted to the computer system by studying the condition of venous image acquisition, and then the image is processed in real time.In image processing, an algorithm for automatically extracting ROI region of interest is put forward to facilitate filtering and denoising, image enhancement and edge detection of extracted venous images; second, an improved algorithm: restrictive median filter denoising algorithm is proposed.The histogram equalization contrast enhancement algorithm based on power law transformation, the logic operation edge detection algorithm based on Otsu threshold segmentation, the improved processing effect display algorithm extract the clear vein edge;Third, the improved algorithm is evaluated by image quality evaluation standard. The evaluation results show that the improved algorithm has some advantages compared with the traditional algorithm, the improved algorithm is simple and flexible, and its processing results reach the expected results.Fourth, the method of measuring the subcutaneous depth of human dorsal hand vein vessel by gray correspondence method is put forward.Through the self-designed human dorsal hand vein model, the grayscale value of the vein image of the back of hand model and the subcutaneous depth value of the vein vein of the back of hand model were calibrated, fitted and calibrated.Finally, the visual difference of the subcutaneous depth of the blood vessel of the dorsal vein of the hand can be quantitatively given, and the measured depth of the blood vessel can be labeled in real time, which is convenient for the medical staff to make the reference judgment when the venipuncture is carried out, so as to achieve the purpose of auxiliary medical application.
【學位授予單位】:西安科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R318;TP391.41
【參考文獻】
相關期刊論文 前10條
1 王一丁;段強宇;崔家禮;楊晨艷;;多參數(shù)融合的手背靜脈圖像質量評價[J];小型微型計算機系統(tǒng);2016年04期
2 余成波;余玉潔;方軍;鄧順華;;基于FPGA手指靜脈圖像采集系統(tǒng)的研制[J];電子技術應用;2015年11期
3 蔡建輝;王淑華;;紅外測溫技術在新鋼運輸部變配電所及各站段配電房的應用[J];科技廣場;2015年06期
4 黃鑒;盧玫;李博漢;張濤;;基于紅外檢測乳腺腫瘤的多參數(shù)反演研究[J];生物醫(yī)學工程研究;2015年02期
5 翟奕;劉永基;何遠清;;投影式頭戴靜脈顯像光學系統(tǒng)的設計[J];中國光學;2015年01期
6 楊金鋒;賈超云;;嵌入式手指靜脈圖像采集系統(tǒng)的研制[J];中國民航大學學報;2015年01期
7 凌盛杰;邵正中;陳新;;同步輻射紅外光譜成像技術對細胞的研究[J];化學進展;2014年01期
8 朱士虎;游春霞;;一種改進的均值濾波算法[J];計算機應用與軟件;2013年12期
9 蔡超峰;任景英;;基于直方圖均衡化的手背靜脈圖像對比度增強[J];計算機應用;2013年04期
10 劉建科;李洋;;低對比度手指靜脈圖像的分割[J];電子技術應用;2012年12期
相關碩士學位論文 前7條
1 郭朝霞;基于圖像處理的牛頓環(huán)應力測量方法研究[D];西安科技大學;2016年
2 劉菲;手指靜脈識別關鍵問題研究[D];山東大學;2015年
3 趙占永;手背靜脈圖像質量評價以及活體確認研究[D];北方工業(yè)大學;2014年
4 任泓宇;近紅外靜脈圖像特征增強及可視化算法[D];中國礦業(yè)大學;2014年
5 馬文強;皮下靜脈紅外成像系統(tǒng)研究[D];大連理工大學;2013年
6 叢曉剛;皮下靜脈紅外成像技術的研究[D];華中科技大學;2007年
7 徐翔;用于測量近紅外光在生物組織模型中穿透深度的樣機研制[D];華中科技大學;2007年
,本文編號:1733689
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1733689.html