直管型超聲行波微泵驅(qū)動參數(shù)分析
本文選題:超聲行波 切入點:橢圓運動 出處:《山東大學(xué)》2012年碩士論文
【摘要】:隨著微加工技術(shù)的發(fā)展以及其在生物醫(yī)學(xué)領(lǐng)域內(nèi)應(yīng)用的迅速擴(kuò)張,身為微機(jī)電(MEMS)技術(shù)核心地位的微泵技術(shù)也日益成為各國科學(xué)家微技術(shù)研究的熱點,提出了很多基于不同原理,形式各樣的微泵模型。其中有一部分已經(jīng)應(yīng)用到實際當(dāng)中。但不論是有閥門微泵還是基于電滲、電水力等原理的無閥門微泵都有其致命弱點,嚴(yán)重限制了應(yīng)用范圍和領(lǐng)域。為此,本文提出了一種新型的無閥微泵,它基于超聲行波理論,結(jié)構(gòu)簡單、驅(qū)動力強(qiáng)、對所驅(qū)動的流體種類基本沒有限制。超聲行波微泵所依據(jù)的原理基本有三:1.行波在管壁上傳播時,管壁內(nèi)側(cè)質(zhì)點做單一方向的橢圓運動,因流體粘度作用,該橢圓運動推動流體流動。2.行波在管壁上傳播時引起管壁的蠕動,該蠕動維持一定的形狀向單一方向傳播,因空間置換推動流體向前流動。3.超聲進(jìn)入流體時在流體和固體界面處形成聲流,產(chǎn)生的聲輻射力沿一定角度入射推動流體。 為對行波微泵做系統(tǒng)的有限元分析,在本文中首先介紹微機(jī)電和微流體驅(qū)動設(shè)備的發(fā)展現(xiàn)狀,對當(dāng)前比較流行的微流體驅(qū)動器件做簡單介紹,包括結(jié)構(gòu)和所依據(jù)的原理以及各自的弱點等。然后對本文所探討的微泵的構(gòu)成材料做介紹和分析,包括壓電振子的構(gòu)成、壓電振子上所加載荷的排列方式、微管道的結(jié)構(gòu)參數(shù)及材料參數(shù)。利用有限元分析軟件對微泵進(jìn)行建模,并對模型做模態(tài)和諧響應(yīng)分析,確定在最佳模態(tài)下的驅(qū)動頻率。在加上電壓載荷后,對模型做瞬態(tài)動力學(xué)分析,在后處理中觀察微泵內(nèi)壁表面質(zhì)點的橢圓運動軌跡。最后探討微泵模型的流固耦合,先對有限元分析軟件做流固耦合的方法和步驟做簡要分析,尤其是對雙向流固耦合的原理、步驟以及CFX軟件設(shè)置做介紹。然后分別對不同的電壓幅值、頻率載荷、不同的壁面粗糙度以及不同的流體動力粘度做流固耦合分析。通過對后處理中的結(jié)果數(shù)據(jù)做流線、流速分析得到了一些有用的結(jié)論,包括:驅(qū)動電壓的幅值大小與管口流速成正比,并且當(dāng)驅(qū)動頻率等于共振頻率時驅(qū)動效果最明顯;當(dāng)流體動力粘度小于0.001Pa·s時微流體流速隨粘度提高而線性增大,之后則緩慢下降;壁面粗糙度不同,近壁面處流速的峰值會隨粗糙度增加而增大,但從圖中也可以看出平均流速并未有明顯增大。此外,通過CFX后處理得到了微管道中的截面流速矢量圖,從圖中可以看出在行波驅(qū)動作用顯著的部分流速分布呈現(xiàn)自微管頂部向下逐漸減慢的特點,而行波驅(qū)動作用極微弱的部分流速分布則近似呈現(xiàn)拋物線形狀。這些結(jié)論為將來對微泵模型的優(yōu)化和驅(qū)動不同流體時微泵參數(shù)的選擇提供有意義的依據(jù)。
[Abstract]:With the development of micro-processing technology and the rapid expansion of its application in the field of biomedicine, the micro-pump technology, which is the core of MEMS technology, has become a hot spot in the research of microtechnology by scientists all over the world, many of which are based on different principles.Various forms of micropump model.Some of them have been applied in practice.However, no matter there is valve micropump or based on electroosmosis, electrohydraulic principle has its fatal weakness, which seriously limits the scope and field of application.In this paper, a new valveless micropump is proposed, which is based on the theory of ultrasonic traveling wave. It is simple in structure and strong in driving force.The ultrasonic traveling wave micropump is based on the principle of 3: 1.When the traveling wave propagates on the pipe wall, the inner particle of the pipe wall moves in a single direction of elliptical motion, which impels the fluid flow. 2 because of the effect of fluid viscosity.The peristalsis of the pipe wall is caused by traveling wave propagating on the pipe wall. The peristalsis maintains a certain shape and propagates in a single direction.The acoustic flow is formed at the interface between the fluid and the solid when the ultrasonic enters the fluid, and the acoustic radiation force is incident at a certain angle to push the fluid forward.In order to analyze the system of traveling wave micropump by finite element method, this paper first introduces the development status of micro electromechanical and micro fluid driving equipment, and briefly introduces the popular micro fluid driver at present.Including the structure and the underlying principles, as well as their respective weaknesses and so on.Then the materials of the micro-pump discussed in this paper are introduced and analyzed, including the structure of the piezoelectric vibrator, the arrangement of the load added on the piezoelectric oscillator, the structural parameters and the material parameters of the micro-pipe.The finite element analysis software is used to model the micropump, and the modal harmonic response is analyzed to determine the driving frequency in the optimal mode.After adding the voltage load, the transient dynamics of the model is analyzed, and the elliptical motion trajectory of the particles on the inner surface of the micropump is observed in the post-processing.Finally, the fluid-solid coupling of the micro-pump model is discussed. Firstly, the method and procedure of fluid-solid coupling are briefly analyzed, especially the principle and steps of two-way fluid-solid coupling, as well as the configuration of CFX software.Then fluid-solid coupling analysis is made for different voltage amplitude, frequency load, different wall roughness and different hydrodynamic viscosity.Some useful conclusions are obtained by streamline the result data of post-processing, including: the amplitude of the driving voltage is proportional to the velocity of the nozzle, and the driving effect is the most obvious when the driving frequency is equal to the resonant frequency;When the hydrodynamic viscosity is less than 0.001Pa s, the flow velocity increases linearly with the increase of viscosity, and then decreases slowly.However, it can also be seen from the diagram that the average velocity does not increase significantly.In addition, the cross-section velocity vector diagram of the microtube was obtained by CFX post-processing. It can be seen from the diagram that the partial velocity distribution, which has significant driving effect on the traveling wave, is gradually slowing down from the top of the microtube.The partial velocity distribution of traveling wave driving is parabola.These conclusions provide a meaningful basis for the optimization of micropump model and the selection of micropump parameters when driving different fluids in the future.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:R318.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張敬濤;魏守水;徐昊;;超聲行波微流體驅(qū)動模型的耦合分析[J];微納電子技術(shù);2010年01期
2 謝恩華;李曉謙;;超聲波熔體處理過程中的聲流現(xiàn)象[J];北京科技大學(xué)學(xué)報;2009年11期
3 張善亮;Nithin Narayananb;徐波;;微流道交流電水力泵的數(shù)值模擬及優(yōu)化[J];傳感技術(shù)學(xué)報;2006年05期
4 劉婷婷;高楊;李磊民;楊濤;;電滲驅(qū)動微泵設(shè)計初探[J];傳感技術(shù)學(xué)報;2008年02期
5 孫宏明;郭航;;微流體裝置中超聲流的研究[J];傳感技術(shù)學(xué)報;2008年03期
6 王瑞金;樓少敏;;用于微機(jī)電系統(tǒng)的磁流體微泵的研究[J];功能材料與器件學(xué)報;2006年03期
7 錢曉蓉;沈宏繼;;微流體動力學(xué)研究發(fā)展與現(xiàn)狀[J];航空精密制造技術(shù);2005年06期
8 楊吉新;張可;黨慧慧;;基于ANSYS的流固耦合動力分析方法[J];船海工程;2008年06期
9 郭慶;范啟富;;基于ANSYS的輸流管道液固耦合有限元仿真[J];微型電腦應(yīng)用;2010年04期
10 樸林華,欒桂冬,張福學(xué);壓電泵振動模態(tài)的有限元分析[J];壓電與聲光;2004年06期
相關(guān)碩士學(xué)位論文 前3條
1 婁濤;基于ANSYS的流固耦合問題數(shù)值模擬[D];蘭州大學(xué);2008年
2 張杰;某大型塔器流固耦合的數(shù)值仿真[D];北京化工大學(xué);2009年
3 吳云峰;雙向流固耦合兩種計算方法的比較[D];天津大學(xué);2009年
,本文編號:1716692
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1716692.html