生物醫(yī)用聚合物材料表面功能化構(gòu)建及抗蛋白吸附研究
本文選題:丙烯酸酯 切入點(diǎn):聚對苯二甲酸乙二醇酯 出處:《華南理工大學(xué)》2013年博士論文
【摘要】:生物聚合物材料以其良好的機(jī)械性能、耐磨性和加工性能而被廣泛應(yīng)用于與體液或血液接觸的材料。但與生物環(huán)境接觸時都是以外源性物質(zhì)的狀態(tài)存在,不同程度地引起生物體的不良反應(yīng)(異物反應(yīng))。這些反應(yīng)都與非特異性蛋白質(zhì)迅速吸附在無保護(hù)的材料表面有關(guān),而非特異性蛋白的吸附又嚴(yán)重影響材料的表面物理化學(xué)特性。因此,材料表面的功能化構(gòu)建及對非特異性蛋白吸附的抑制,是聚合物材料生物相容性的重要研究內(nèi)容。 蛋白質(zhì)主要是靠疏水作用吸附在材料表面。對于生物醫(yī)用聚合物材料,材料表面親/疏水性是影響蛋白質(zhì)吸附的首要因素。同時,由于蛋白質(zhì)是帶有兩性電荷的聚電解質(zhì),若材料表面也帶有兩親性離子結(jié)構(gòu)或親水基團(tuán),通過富集水化層或空間排斥也可以削弱材料與蛋白的相互作用,抑制非特異性蛋白的吸附。因此,針對表面非特異性蛋白吸附引起的異物反應(yīng)問題,本論文利用氨等離子體表面改性和活性生物分子接枝技術(shù),在聚合物材料表面引入兩親性離子或親水的功能化基團(tuán),研究表面抗非特異性蛋白吸附的機(jī)理,為其在后期臨床的廣泛應(yīng)用提供重要理論依據(jù)。 采用低溫氨等離子體改性技術(shù),將親水性基團(tuán)引入疏水性丙烯酸酯和聚甲基丙烯酸甲酯(PMMA)材料表面。表面元素組成及接觸角分析表明氨等離子體處理后,材料表面引入含氮的-NH2、-NH3+等極性基團(tuán),成功構(gòu)建了氨基化的材料表面。同時表面也伴隨著-COO-的產(chǎn)生,形成兩親性離子結(jié)構(gòu),親水性改善。一定程度的等離子體刻蝕對后續(xù)研究影響不大,且透光率基本保持不變,優(yōu)異的光學(xué)性能得到保留。但該技術(shù)處理的時效性較差。蛋白吸附實(shí)驗(yàn)表明,疏水性丙烯酸酯氨基化后的表面蛋白吸附減少,而氨基化的PMMA表面吸附增多,仍需要進(jìn)一步接枝提高PMMA材料的表面抗蛋白吸附能力。 為了進(jìn)一步增強(qiáng)表面抗蛋白吸附能力及長效性,首次利用酰胺鍵將水蛭素多肽結(jié)合在氨基化的丙烯酸酯系材料表面。紫外分光光度分析顯示在靜態(tài)吸附下,氨基化處理后的PMMA浸泡在500μg/ml的水蛭素溶液中4h時,吸光值最高,效果最好;表面形貌為規(guī)整有序;水蛭素接枝后表面親水性單純氨基化的表面要差,這是水蛭素分子中的負(fù)電荷中和了材料表面的正電荷導(dǎo)致的,這個推論也與表面能結(jié)果一致;表面-NH3+鍵含量下降而N-C=O鍵含量增加,證明水蛭素在材料表面接枝成功,表面也形成兩性離子結(jié)構(gòu)。通過石英晶體微天平動態(tài)吸附模型測試,接枝水蛭素后Fn的吸附迅速減少,且形成的吸附層最為疏松,容易被洗脫,,實(shí)現(xiàn)了表面抗蛋白吸附功能,性能穩(wěn)定。 為了驗(yàn)證氨基化改善親水性技術(shù)的普適性,采用氨等離子體表面改性處理PET膜,構(gòu)建親水性表面。氨基化后表面親水性大幅改善,并引入較多的含N基團(tuán)(-NH2/-NH3+)和-COO-官能團(tuán),膜表面形貌沒有變化。氨基化的PET表面蛋白吸附明顯偏少,說明氨基化技術(shù)對于表面疏水的聚合物材料具有普遍適用性。通過氨基化構(gòu)建的機(jī)理分析,表面基團(tuán)的形成也為后續(xù)進(jìn)一步接枝單體奠定基礎(chǔ)。 采用2-甲基丙烯酰氧乙基磷酰膽堿(MPC)在氨基化的PET膜表面構(gòu)建親水性生物磷脂層。MPC分子的兩親性離子結(jié)構(gòu)進(jìn)一步改善了PET表面的親水性和抗蛋白吸附能力。高分辨XPS圖譜和FTIR光譜證明MPC接枝后,親水性基團(tuán)如-COOH,-N-C=O、-P-OH及-N+(CH3)3成功接入到材料表面。在接枝10mg/ml MPC時蛋白吸附量最低,表面平整、均一。通過MPC功能化表面作用機(jī)理進(jìn)一步分析,磷脂基團(tuán)構(gòu)建的PET表面通過水化層和空間排斥共同作用,減少蛋白質(zhì)的非特異性吸附。由于MPC接枝穩(wěn)定,所以MPC構(gòu)建的PET表面也具有抗非特異性蛋白吸附的長效性。 根據(jù)生物醫(yī)用聚合物材料與表面抗非特異性蛋白、細(xì)胞的吸附關(guān)系,構(gòu)建了功能化表面生成模型。并以上述三種聚合物材料為基底進(jìn)行細(xì)胞相容性和動物體內(nèi)實(shí)驗(yàn)研究。幾種功能化的表面均不同程度地促進(jìn)細(xì)胞增殖。水蛭素或MPC接枝的材料表面比單純氨基化的表面抗細(xì)胞黏附能力大大提高。動物體內(nèi)實(shí)驗(yàn)結(jié)果顯示,接枝水蛭素的人工晶狀體能夠始終保持很好的透明度。對生物醫(yī)用聚合物材料表面功能化構(gòu)建及抗蛋白吸附機(jī)理進(jìn)行研究,表明疏水材料表面親水性和抗蛋白吸附功能化的構(gòu)建是由于兩親性離子及水化層的存在,能夠?qū)σ矌尚噪x子的蛋白質(zhì)起到排斥作用,從而減少非特異性蛋白吸附引起的不良反應(yīng),為今后材料在臨床植入領(lǐng)域的更廣泛應(yīng)用奠定理論基礎(chǔ)。
[Abstract]:Biological polymer materials are widely used in contact with body fluids or blood based on their good mechanical properties , wear resistance and processing properties . However , when contacted with biological environment , there are adverse reactions ( foreign body reactions ) caused by exogenous substances . These reactions are related to the rapid adsorption of non - specific proteins on the surface of unprotected material , but the adsorption of non - specific proteins seriously affects the surface physicochemical properties of the material . Therefore , the functionalization of the surface of the material and the inhibition of nonspecific protein adsorption are important research contents in the biocompatibility of polymer materials .
For biomedical polymer materials , the hydrophilicity / hydrophobicity of the material is the primary factor affecting protein adsorption . At the same time , because the protein is a polyelectrolyte with ampholytic charge , it can weaken the interaction of the material with the protein and inhibit the adsorption of nonspecific protein .
Surface element composition and contact angle analysis indicate that after ammonia plasma treatment , the surface of the material introduces nitrogen - containing - NH2 , - NH3 + and other polar groups . The surface of the material has been successfully constructed .
In order to further enhance the ability of surface anti - protein adsorption and its long - acting property , it is the first time to use the amide bond to bind the leeches polypeptide to the surface of the amino acrylic ester material . The UV spectrophotometric analysis shows that , under static adsorption , the PMMA after amination treatment is soaked in 500 渭g / ml leech solution for 4 hours , the light absorption value is the highest , and the effect is best ;
the surface appearance is regular and orderly ;
The surface hydrophilicity is poor , which is caused by the negative charge and the positive charge on the surface of the material , which is also consistent with the surface energy results .
The surface - NH _ 3 + bond content decreased and the N - C = O bond content increased . It was shown that the surface grafting was successful and the surface formed a zwitterionic structure . The adsorption of Fn decreased rapidly through the dynamic adsorption model test of quartz crystal microbalance , and the formed adsorption layer was the most loose and easily eluted , thus the surface anti - protein adsorption function was realized , and the performance was stable .
In order to verify the universality of the hydrophilic technology , the hydrophilic surface was constructed by modifying the PET film with ammonia plasma surface modification . The hydrophilicity of the surface was greatly improved after amination , and the surface morphology of the membrane was not changed .
A hydrophilic biophospholipid layer was constructed on the surface of amino PET film by using 2 - methacryloyloxyethyl phosphorylcholine ( MPC ) . The amphiphilic ionic structure of MPC molecule further improved the hydrophilicity and anti - protein adsorption ability of PET surface . After grafting 10mg / ml MPC , the hydrophilic groups such as - COOH , - N - C = O , - P - OH and - N + ( CH3 ) 3 were successfully applied to the surface of the material .
A functional surface - generating model is constructed based on the relationship between the biological medical polymer material and the surface anti - nonspecific protein and the cell , and the cell compatibility and the in vivo experiment are carried out on the basis of the three polymer materials .
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號】:R318.08
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 汪錳;安全福;吳禮光;莫劍雄;高從X&;;膜Zeta電位測試技術(shù)研究進(jìn)展[J];分析化學(xué);2007年04期
2 魏雨;紀(jì)瓔;肖琳琳;計劍;;具有內(nèi)皮細(xì)胞選擇性的細(xì)胞膜仿生支架材料的研究[J];高分子學(xué)報;2010年12期
3 葉鵬;萬容兵;王新平;;載體材料與蛋白質(zhì)的相互作用及對其構(gòu)象的影響[J];高分子通報;2010年11期
4 王春仁;生物材料表面血漿蛋白的吸附[J];國外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊;1995年06期
5 ;Study on the surface properties of surface modified silicone intraocular lenses[J];International Journal of Ophthalmology(English Edition);2012年01期
6 于謙;張燕霞;徐亞駿;陳紅;;接枝層厚度對聚(N-異丙基丙烯酰胺)改性表面與蛋白質(zhì)相互作用的影響[J];材料導(dǎo)報;2010年22期
7 肖錫峰;江小群;周雷激;;聚乙二醇表面改性抑制蛋白質(zhì)非特異性吸附[J];分析化學(xué);2013年03期
8 劉荷英;何淑漫;陳楚敏;周健;;阻抗蛋白質(zhì)吸附材料研究進(jìn)展[J];化工進(jìn)展;2009年03期
9 王瑤;劉振梅;徐志康;姚克;;聚丙烯酸酯人工晶狀體的表面改性研究:常壓介質(zhì)阻擋放電等離子體處理[J];中國科學(xué)(B輯:化學(xué));2009年02期
10 肖振宇,原續(xù)波,盛京;聚乳酸膜表面氨等離子體改性[J];天津大學(xué)學(xué)報;2004年07期
本文編號:1712001
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1712001.html