基于Coarse-Fine Loop的IA的研究與設(shè)計(jì)
本文選題:生物醫(yī)療電子 切入點(diǎn):儀器放大器 出處:《電子科技大學(xué)》2017年碩士論文
【摘要】:近年來,隨著社會(huì)經(jīng)濟(jì)的發(fā)展以及人們生活方式的改變,個(gè)人的身體健康狀況受到了越來越多的關(guān)注。由于生物電信號的采集能夠檢測和預(yù)測一個(gè)人的身體狀況,所以人體的生物電信號受到越來越多人的重視,成為了近些年的研究熱點(diǎn)。在傳統(tǒng)意義上,生物電信號的采集系統(tǒng)是大體積、需要市電供電的設(shè)備,這不僅限制了患者的自由、使患者產(chǎn)生不適,更不能達(dá)到實(shí)時(shí)監(jiān)測的目的。電路設(shè)計(jì)者們做出了很多努力來優(yōu)化系統(tǒng)的體系結(jié)構(gòu)并尋求電路的創(chuàng)新設(shè)計(jì),以實(shí)現(xiàn)可穿戴式的醫(yī)學(xué)監(jiān)控系統(tǒng)。生物醫(yī)療電子系統(tǒng)中模擬前端電路的性能影響著整個(gè)系統(tǒng)的性能,在設(shè)計(jì)過程中模擬前端的功耗、面積、共模抑制比、建立時(shí)間等都需要多加留意。對于可穿戴的設(shè)備,電極失調(diào)電壓對系統(tǒng)的影響變得尤為重要:電極失調(diào)電壓變化時(shí),系統(tǒng)需要重新建立以消除電極失調(diào)電壓的影響;目前的許多設(shè)計(jì)在重新建立時(shí)需要消耗很長的時(shí)間(幾分鐘到幾個(gè)小時(shí)),不滿足可穿戴設(shè)備對建立時(shí)間的要求。本論文基于對目前生物醫(yī)療電子系統(tǒng)處理電極失調(diào)電壓時(shí)建立時(shí)間的研究,提出了一種基于Coarse-Fine Loop的儀器放大器(Instrumentation Amplifier,IA)結(jié)構(gòu)。在完成對基于Coarse-Fine Loop的儀器放大器的行為建模和設(shè)計(jì)難點(diǎn)分析的基礎(chǔ)上,本文采用0.18μm CMOS工藝設(shè)計(jì)并實(shí)現(xiàn)了該儀器放大器,其供電電壓為1.8 V。該儀器放大器處理電極失調(diào)電壓的能力為±75mV,建立時(shí)間縮短到小于4.5s。并且取得了大于132 dB的共模抑制比,62.2 nV(?)的噪聲功率譜密度,在0.5-100 Hz信號帶寬內(nèi)的積分噪聲為843.6V_(rmsn)。
[Abstract]:In recent years, with the development of social economy and the change of people's way of life, the health status of individual has been paid more and more attention. Because the collection of bioelectric signal can detect and predict a person's physical condition, Therefore, more and more people pay attention to the bioelectrical signal of human body, which has become the research hotspot in recent years. In the traditional sense, the collection system of bioelectric signal is a large volume equipment that needs power supply, which not only limits the freedom of patients. Make patients uncomfortable, not to mention the goal of real-time monitoring. Circuit designers have made a lot of efforts to optimize the architecture of the system and seek innovative design of the circuit. In order to realize wearable medical monitoring system, the performance of analog front-end circuit in biomedical electronic system affects the performance of the whole system. In the design process, the power consumption, area, common-mode rejection ratio of the front end are simulated. For wearable devices, the effect of electrode offset voltage on the system becomes particularly important: when the electrode offset voltage changes, the system needs to be rebuilt to eliminate the effect of electrode offset voltage; Many of the current designs take a long time (minutes to hours) to rebuild and do not meet the requirements of wearable devices for setup time. This paper is based on the current biomedical electronic system to deal with electrode loss. Study on the time of setting up when adjusting voltage, An instrument amplifier based on Coarse-Fine Loop is proposed. Based on the analysis of the behavior modeling and design difficulties of the instrument amplifier based on Coarse-Fine Loop, the instrument amplifier is designed and implemented by 0.18 渭 m CMOS process. The power supply voltage is 1.8 V. the capacity of the instrument amplifier to deal with the electrode offset voltage is 鹵75 MV, and the setup time is shortened to less than 4.5 s, and the common-mode rejection ratio (CCR) greater than 132 dB is obtained. The integral noise in the bandwidth of 0.5-100 Hz signal is 843.6V / s rmsnn.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R318;TN722
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 王振紅;齊林;;高精度放大器應(yīng)用技巧[J];中國科技信息;2010年21期
2 翟建國;論儀器放大器的高共模抑制比[J];河南大學(xué)學(xué)報(bào)(自然科學(xué)版);1993年03期
相關(guān)重要報(bào)紙文章 前5條
1 本報(bào)記者 韓言銘;城鎮(zhèn)化助推生物醫(yī)療項(xiàng)目[N];中國經(jīng)營報(bào);2013年
2 汲東華;開曼邁瑞欲做生物醫(yī)療電子行業(yè)“霸主”[N];證券時(shí)報(bào);2001年
3 深圳特區(qū)報(bào)記者 楊婧如;深圳生物醫(yī)療品牌“虎口奪食”[N];深圳特區(qū)報(bào);2014年
4 ;低功耗與小體積兼得TI高精度36V放大器使[N];電子資訊時(shí)報(bào);2006年
5 記者 劉熙;我省成立首家3D打印研發(fā)機(jī)構(gòu)[N];云南日報(bào);2014年
相關(guān)碩士學(xué)位論文 前6條
1 姚海亮;基于Coarse-Fine Loop的IA的研究與設(shè)計(jì)[D];電子科技大學(xué);2017年
2 謝婷婷;新型二氧化鉛電極電解處理有機(jī)廢水研究[D];上海應(yīng)用技術(shù)大學(xué);2017年
3 王宏利;ST電極公司發(fā)展戰(zhàn)略與實(shí)施的研究[D];天津大學(xué);2016年
4 常紅;基于65nm SRAM的低失調(diào)靈敏放大器的分析與設(shè)計(jì)[D];安徽大學(xué);2014年
5 王秋紅;基于ITO的可拋型電極的制備及其在生物分子檢測中的應(yīng)用[D];南通大學(xué);2016年
6 錢張琰;基于TSMC65nm鎖存型靈敏放大器失調(diào)電壓的建模[D];安徽大學(xué);2015年
,本文編號:1685177
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1685177.html