固液界面納米氣泡生成及性質(zhì)研究
本文選題:原子力顯微鏡 切入點:納米氣泡 出處:《上海師范大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
【摘要】:溶液中存在著納米氣泡的提出源于研究兩個疏水固體浸入水中時存在著的長程引力。而最先獲得的納米氣泡的圖像來自于掃描電鏡,稱為原子力顯微鏡的輕敲模式(在不斷振動的懸臂上粘附著一個傳統(tǒng)的AFM探針并浸入水中對樣品進(jìn)行掃描),因為AFM的接觸模式探針與樣品間的作用力太大而不適合對軟的物質(zhì)進(jìn)行成像。從那以后,納米氣泡在各個領(lǐng)域引起了廣泛關(guān)注。 為了用AFM對納米氣泡進(jìn)行成像,通常使用較為平整的基底,包括:高序熱解石墨(HOPG),,云母,金,聚苯乙烯薄膜,以及修飾過的硅。而為了在這些基底上產(chǎn)生納米氣泡,應(yīng)用了以下方法:直接浸漬法,兩種溶劑替換以及快速加熱,電化學(xué)法等。其中,醇水替換被廣泛應(yīng)用并被證明是能在不同的基底上產(chǎn)生大量納米氣泡的重復(fù)性好的方法。同樣,也能使用其它有機溶劑與水替換來產(chǎn)生納米氣泡。然而,有機溶劑與水的替換存在著一些局限性,比如:這種方法不能應(yīng)用在一些重要的可溶于有機溶劑的基底上,例如有機涂料或生物膜。 在納米氣泡的研究中一個重要的問題是如何在一定的基底上生成足夠多的納米氣泡。醇水替換能夠生成納米氣泡是因為乙醇中含有的溶解氣體比水中的溶解氣體多。然而這一機制是否也適用于水與含溶解氣體低于水的液體替換卻并不知道,如水與鹽溶液的替換。在本論文中,主要在HOPG表面應(yīng)用不同濃度的鹽溶液來替換水,發(fā)現(xiàn)水-鹽水替換確實能生成納米氣泡。即使與水替換的鹽的濃度低到0.15M也同樣能生成納米氣泡,且得到的納米氣泡隨所使用的鹽濃度的增加而增加。當(dāng)所用的鹽的濃度高于2.00M時,所得以的納米氣泡的密度基本保持不變。且納米氣泡的一些性質(zhì),如能夠合并,接觸角為164°左右等性質(zhì)與其他研究者所到的納米氣泡的性質(zhì)一致。 實驗還證實了納米氣泡能存在于乙醇中,之前認(rèn)為納米氣泡只能存在于水中。此外,還發(fā)現(xiàn)把新解離的HOPG在空氣中擱置一段時間后浸入水中就能產(chǎn)生納米氣泡,氣泡的量隨擱置時間的增加而增加。此外,還應(yīng)用同步輻射的軟X射線對納米氣泡進(jìn)行了研究,其結(jié)果證實存在納米氣泡。
[Abstract]:The existence of nano-bubbles in the solution is derived from the study of the long-range gravity of two hydrophobic solids when they are immersed in water, and the first images of the nano-bubbles are obtained from the scanning electron microscope (SEM). A tap mode called an atomic force microscope (attached to a traditional AFM probe on a vibrating cantilever and immersed in water to scan the sample because the force between the probe and the sample in the AFM contact mode is too great to feel comfortable). Imaging of soft matter. From then on, Nanobubbles have attracted wide attention in various fields. For the purpose of imaging nano-bubbles with AFM, a relatively flat substrate is usually used, including high-order pyrolytic graphite HOPG, mica, gold, polystyrene films, and modified silicon. The following methods were used: direct impregnation, two solvent substitution, rapid heating, electrochemical methods, etc., Alcohol water substitution is widely used and has been shown to be a reproducible method for producing large numbers of nanometer bubbles on different substrates. Similarly, other organic solvents and water can be used to produce nano bubbles. There are some limitations in the substitution of organic solvents with water. For example, this method cannot be applied to some important solvent-soluble substrates, such as organic coatings or biofilms. An important problem in the study of nano-bubbles is how to generate enough nano-bubbles on a certain substrate. The substitution of alcohol and water can produce nano-bubbles because the dissolved gas in ethanol is more than the dissolved gas in water. However, it is not known whether this mechanism also applies to the substitution of water with liquids containing dissolved gases below water. In this paper, different concentrations of salt solution are used to replace water on the surface of HOPG. It has been found that water-salt replacement does produce nano bubbles. Even if the concentration of salt replaced by water is as low as 0. 15m, it can also form nano bubbles. When the concentration of salt used is higher than 2.00m, the density of the resulting nano-bubble remains basically unchanged, and some properties of the nano-bubble, such as being able to merge, are obtained. The contact angle of 164 擄is the same as that of other nano-bubbles. The experiment also confirmed that nano-bubbles can exist in ethanol, which was previously thought to exist only in water. In addition, it was also found that the newly dissociated HOPG can be used in the air for a period of time and then immersed in water to produce nano-bubbles. The amount of bubble increases with the increase of shelving time. In addition, the synchrotron radiation soft X-ray is used to study the nano-bubble, and the results show that there are nano-bubbles.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:R318.08
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 阮曉博;楊芳;顧寧;;微納氣泡制備及其應(yīng)用于醫(yī)學(xué)超聲影像增強與藥物載運的發(fā)展[J];東南大學(xué)學(xué)報(醫(yī)學(xué)版);2011年01期
2 ;[J];;年期
3 ;[J];;年期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相關(guān)會議論文 前2條
1 陳邦林;馬士禹;張云艷;;納米氣泡的新進(jìn)展[A];中國化學(xué)會第十三屆膠體與界面化學(xué)會議論文摘要集[C];2011年
2 張雪花;樓柿濤;張志祥;張曉東;孫潔林;胡鈞;;固液界面納米氣泡的研究[A];全國第七屆掃描隧道顯微學(xué)學(xué)術(shù)會議(STM'7)論文集(一)[C];2002年
相關(guān)重要報紙文章 前1條
1 記者 劉瑞;“五化”治污 再現(xiàn)清透滇池水[N];昆明日報;2010年
相關(guān)博士學(xué)位論文 前2條
1 王玉亮;固液界面納米氣泡與基底相互作用研究及滑移長度測量[D];哈爾濱工業(yè)大學(xué);2010年
2 惠飛;HOPG表面納米成膜性質(zhì)的電化學(xué)原子力顯微鏡研究[D];華東師范大學(xué);2009年
相關(guān)碩士學(xué)位論文 前9條
1 郭文;固液界面納米氣泡生成及性質(zhì)研究[D];上海師范大學(xué);2012年
2 張娜;氧氣納米氣泡在疏水顆粒表面的富集研究及應(yīng)用[D];上海師范大學(xué);2011年
3 高蓮花;納米氣泡對疏水顆粒分散性影響的研究[D];上海師范大學(xué);2012年
4 管e
本文編號:1629978
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1629978.html