基于主成分分析去噪的非接觸心電測量
本文選題:耦合電容 切入點(diǎn):主成分分析 出處:《燕山大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
【摘要】:長時間不間斷的心電(ECG)監(jiān)測對心臟突發(fā)疾病的預(yù)防有著重要的意義,非接觸測量是一種日常生活中在不影響人正;顒酉聦θ梭w心電信號進(jìn)行監(jiān)測的有效方法,其中利用耦合電容原理是設(shè)計非接觸心電測量系統(tǒng)的方法之一。由于測量電極與人體不是固定在一起的,所以人微小的動作就會使耦合電容兩極板之間的距離或人體皮膚上被測量的位置發(fā)生改變,進(jìn)而引起采集的心電信號發(fā)生變化,,導(dǎo)致在信號處理后經(jīng)常出現(xiàn)濾波效果不理想或心電信號被削弱而失真的情況。因此需要一種能夠與非接觸心電測量匹配的濾波方法。 本文根據(jù)主成分分析(Principal component analysis,PCA)方法的基礎(chǔ)理論及其應(yīng)用,從能量的角度出發(fā),提出了一種快速自適應(yīng)PCA去噪的算法,為實(shí)現(xiàn)對人體心電信號的長期監(jiān)測提供了一種新的濾波方法。主要的研究內(nèi)容與方法如下: 利用耦合電容原理設(shè)計了一種非接觸測量系統(tǒng),采集的心電信號首先在硬件電路中進(jìn)行濾波(主要是50Hz工頻干擾)和放大,然后經(jīng)A/D轉(zhuǎn)換由模擬信號變?yōu)閿?shù)字信號。 總結(jié)分析了PCA方法的基礎(chǔ)理論,以此為依據(jù)確定了PCA去噪的算法:首先用動態(tài)嵌入(Dynamical embedding,DE)技術(shù)得出一個包含采集信號所有信息的嵌入矩陣,然后提取信號的主成分,再根據(jù)Beyesian信息準(zhǔn)則確定所需的主成分的個數(shù),最后將所選擇的主成分進(jìn)行線性組合。以不同的信號作為噪聲,對PCA去噪算法做了仿真實(shí)驗,并對其幅值特性做了進(jìn)一步的分析,證明了這種濾波方法的準(zhǔn)確性。 用非接觸測量的方式采集人體的心電信號,并用PCA去噪的算法對其進(jìn)行處理,通過實(shí)驗證明了這種濾波方法能夠在保留信號主要特征的前提下可以將干擾信號一次性去除,即使輸入信號在發(fā)生變化時也能保證濾波效果的穩(wěn)定性,能很好地與非接觸測量的方式結(jié)合在一起。
[Abstract]:Continuous monitoring of ECG for a long time is of great significance to the prevention of sudden heart disease. Non-contact measurement is an effective method to monitor human ECG signal in daily life without affecting human normal activities. The principle of coupling capacitance is one of the methods to design non-contact ECG measurement system. Since the measuring electrode is not fixed to the human body, So a tiny human action changes the distance between the two poles of the coupling capacitance or the measured position on the human skin, which in turn causes changes in the ECG signals collected. As a result, the filtering effect is not ideal or the ECG signal is weakened and distorted after signal processing, so we need a filtering method that can match the contactless ECG measurement. Based on the basic theory and application of principal component analysis (PCA) method for Principal component Analysis (PCA), a fast adaptive PCA denoising algorithm is proposed from the point of view of energy. This paper provides a new filtering method for long-term monitoring of human ECG signal. The main research contents and methods are as follows:. A non-contact measurement system is designed based on the principle of coupling capacitance. The collected ECG signals are filtered (mainly 50Hz power frequency interference) and amplified in the hardware circuit, and then converted from analog signals to digital signals by A / D conversion. The basic theory of PCA method is summarized and analyzed, and the algorithm of PCA denoising is determined. Firstly, a embedding matrix containing all the information collected from the signal is obtained by using dynamic embedding technique, and then the principal components of the signal are extracted. Then the number of principal components is determined according to the Beyesian information criterion. Finally, the selected principal components are linearly combined. Using different signals as noise, the PCA denoising algorithm is simulated and its amplitude characteristics are further analyzed. The accuracy of this filtering method is proved. The ECG signal of human body is collected by non-contact measurement and processed by PCA denoising algorithm. The experiment proves that this filtering method can remove the interference signal at one time on the premise of retaining the main characteristics of the signal. Even when the input signal changes, it can ensure the stability of the filtering effect, and can be well combined with the non-contact measurement method.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:R318.0;TN911.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡瑜;陳濤;;抑制心電中工頻干擾的數(shù)字濾波方法[J];電子測量技術(shù);2011年08期
2 周永軍,盧智遠(yuǎn),牛中奇,孔令鋒;自適應(yīng)濾波器在心電信號檢測中的應(yīng)用[J];電子質(zhì)量;2004年12期
3 余發(fā)軍;趙元黎;劉偉;呂晶;;主成分分析結(jié)合感知器在醫(yī)學(xué)光譜分類中的應(yīng)用[J];光譜學(xué)與光譜分析;2008年10期
4 彭玉青,張紅梅,何華,顧軍華;數(shù)據(jù)挖掘技術(shù)及其在教學(xué)中的應(yīng)用[J];河北科技大學(xué)學(xué)報;2001年04期
5 張紅濤;楚清河;胡玉霞;顧波;;核函數(shù)主成分分析在糧蟲特征提取中的應(yīng)用[J];河南農(nóng)業(yè)科學(xué);2011年09期
6 王路;王磊;卓晴;王文淵;;基于二維主成分分析的運(yùn)動目標(biāo)檢測[J];計算機(jī)科學(xué);2008年08期
7 王桂蓮;;心電圖電極[J];數(shù)理醫(yī)藥學(xué)雜志;2007年04期
8 李昕;王惠惠;王月茹;趙芳芳;;基于能量估計的小波閾值與經(jīng)驗?zāi)B(tài)分解相結(jié)合的濾波方法研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2011年06期
9 張涇周,壽國法,戴冠中;基于小波變換的心電信號噪聲處理[J];西北工業(yè)大學(xué)學(xué)報;2005年01期
10 李艷輝,王銳;心臟驟停的臨床診斷要點(diǎn)[J];中國鄉(xiāng)村醫(yī)生;2000年12期
相關(guān)碩士學(xué)位論文 前2條
1 魏航;基于小波分析的醫(yī)學(xué)信號去噪方法的研究[D];太原理工大學(xué);2009年
2 戴成武;基于盲信號的無創(chuàng)踝臂指數(shù)下肢血壓測量[D];燕山大學(xué);2010年
本文編號:1570764
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1570764.html