關聯(lián)規(guī)則數(shù)據(jù)挖掘技術在醫(yī)療服務中的應用
本文關鍵詞: 關聯(lián)規(guī)則挖掘 婚檢 兒童肺炎 出處:《云南大學》2012年碩士論文 論文類型:學位論文
【摘要】:隨著計算機科學與技術的廣泛應用,各學科領域產(chǎn)生的數(shù)據(jù)量劇增。為了在這些數(shù)據(jù)中發(fā)現(xiàn)有價值的知識,人們利用數(shù)據(jù)挖掘的方法來解決這一問題,而關聯(lián)規(guī)則挖掘的應用是數(shù)據(jù)挖掘領域中一個重要的研究課題。隨著關聯(lián)規(guī)則挖掘技術的日漸成熟,如何將這一方法運用于從大量的醫(yī)學數(shù)據(jù)中找出其內(nèi)在關聯(lián)規(guī)則的研究,為臨床疾病監(jiān)測、藥物治療效果的評價及疾病預防提供有效依據(jù),更是一個新的研究內(nèi)容。本文利用關聯(lián)規(guī)則挖掘的經(jīng)典Apriori算法對醫(yī)學數(shù)據(jù)進行數(shù)據(jù)挖掘分析。首先使用Apriori算法尋找數(shù)據(jù)庫中數(shù)據(jù)的頻繁項集,然后根據(jù)頻繁項集生成強關聯(lián)規(guī)則,以發(fā)現(xiàn)海量數(shù)據(jù)中項集之間有用的關聯(lián)關系或模式。最終的目的是對關聯(lián)規(guī)則挖掘在臨床疾病監(jiān)測、藥物治療效果的評價以及疾病的預防等方面的應用進行分析研究。列舉關聯(lián)規(guī)則挖掘?qū)闄z數(shù)據(jù)和兒童肺炎藥物治療效果的數(shù)據(jù)進行分析,得到的結果可為婚檢人員提供全面健康體檢項目,也可為兒童肺炎治療的規(guī)范性用藥提供決策依據(jù)。本論文在詳盡分析數(shù)據(jù)挖掘和關聯(lián)規(guī)則挖掘特點的基礎上,闡述和分析了關聯(lián)規(guī)則挖掘的Apriori算法;分析了醫(yī)學數(shù)據(jù)的特點,研究了關聯(lián)規(guī)則在相關疾病數(shù)據(jù)中的應用,并且使用Apriori算法對婚檢數(shù)據(jù)中艾滋病、梅毒、乙肝、丙肝之間的關系和兒童肺炎用藥數(shù)據(jù)中藥物治療效果進行了數(shù)據(jù)挖掘及分析研究,研究結果可為婚檢人員制定全面科學體檢方案。對兒童肺炎病例的關聯(lián)規(guī)則挖掘研究結果可以為其規(guī)范性用藥提供決策依據(jù),在臨床實踐中可以建立兒童肺炎治療用藥字典,從治療效果和維護患者利益的角度出發(fā),合理選擇用藥,制定兒童肺炎病治療最佳用藥方案,改善治療效果,提高治療效率,也可作為藥品審計依據(jù)。研究結果表明,在醫(yī)療衛(wèi)生領域的疾病預防和藥物治療等方面的數(shù)據(jù)中進行數(shù)據(jù)挖掘處理和分析是一個值得重視的研究方向。
[Abstract]:With the wide application of computer science and technology, the amount of data generated in various disciplines has increased dramatically. In order to find valuable knowledge in these data, people use the method of data mining to solve this problem. The application of association rules mining is an important research topic in the field of data mining. With the development of association rules mining technology, how to apply this method to find out the internal association rules from a large amount of medical data, To provide effective basis for clinical disease monitoring, evaluation of therapeutic effect and disease prevention. In this paper, the classical Apriori algorithm of association rule mining is used to analyze the medical data. Firstly, the Apriori algorithm is used to find the frequent itemsets of the data in the database. Then strong association rules are generated according to frequent itemsets to discover useful association relationships or patterns among itemsets in massive data. The ultimate goal is to mine association rules in clinical disease monitoring. The evaluation of drug treatment effect and the application of disease prevention are analyzed. The association rule mining is cited to analyze the data of antemarital examination and the effect of drug therapy on pneumonia in children. The results can provide comprehensive health examination items for premarital medical examiners, as well as the decision basis for the standardized drug use in the treatment of pneumonia in children. This paper analyzes the characteristics of data mining and association rule mining in detail. This paper expounds and analyzes the Apriori algorithm of association rule mining, analyzes the characteristics of medical data, studies the application of association rules in related disease data, and uses Apriori algorithm to analyze HIV / AIDS, syphilis and hepatitis B in premarital examination data. The relationship between hepatitis C and the effect of drug therapy in children with pneumonia were analyzed and analyzed. The results of the study can make a comprehensive scientific check-up plan for the premarital examiners. The results of association rules mining for children pneumonia cases can provide the decision basis for their normative drug use, and can be used in clinical practice to establish a drug dictionary for the treatment of children's pneumonia. From the point of view of therapeutic effect and maintenance of patients' interests, rational choice of drug use, formulation of the best drug use plan for the treatment of pneumonia in children, improvement of therapeutic effect and improvement of therapeutic efficiency can also be used as the basis for drug audit. Data mining and analysis in disease prevention and drug treatment in medical and health field is an important research direction.
【學位授予單位】:云南大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:R319;TP311.13
【參考文獻】
相關期刊論文 前10條
1 許婭;;最簡有效關聯(lián)規(guī)則及其挖掘算法[J];電腦與信息技術;2009年05期
2 程苗;;關聯(lián)分析在數(shù)據(jù)挖掘中的應用[J];激光雜志;2007年03期
3 王實;高文;;數(shù)據(jù)挖掘中的聚類方法[J];計算機科學;2000年04期
4 陸建江,張文獻;關聯(lián)規(guī)則在腫瘤診斷中的應用[J];計算機工程;2003年12期
5 徐剛;袁兆康;;數(shù)據(jù)挖掘及其在醫(yī)學領域中的應用和展望[J];實用臨床醫(yī)學;2006年11期
6 李曉毅;徐兆棣;;關聯(lián)規(guī)則挖掘在醫(yī)療診斷中的應用[J];遼寧師范大學學報(自然科學版);2006年02期
7 趙永進,王世卿;關聯(lián)規(guī)則在股票分析中的應用研究[J];微機發(fā)展;2005年09期
8 黃艷玲;;數(shù)據(jù)挖掘在醫(yī)學領域中的文獻發(fā)展評價[J];現(xiàn)代醫(yī)院;2007年01期
9 鄒卉;劉玉俊;聶文英;孫萍;田麗萍;林倩;張晶卉;李峽;;濟南市兩病篩查與聽力篩查同步管理模式實施探討[J];中國婦幼保健;2006年04期
10 王寅同;高如家;吳海飛;;醫(yī)學數(shù)據(jù)挖掘過程的研究[J];軟件工程師;2011年08期
相關碩士學位論文 前2條
1 左穎;數(shù)據(jù)挖掘在醫(yī)學數(shù)據(jù)分析中的應用[D];國防科學技術大學;2007年
2 馮宏亮;數(shù)據(jù)挖掘中若干關鍵算法的研究[D];西安科技大學;2010年
,本文編號:1545630
本文鏈接:http://sikaile.net/yixuelunwen/swyx/1545630.html