基于皮膚鏡的黑色素瘤識(shí)別算法研究
[Abstract]:Melanoma is a serious threat to human life and health of cancer. Its morbidity and mortality have been increasing gradually in recent years. The current level of medical treatment for metastatic melanoma still lacks effective treatment. The best way to treat melanoma is through early diagnosis and local surgery. In general, early diagnosis mainly depends on doctors naked eye observation and histopathological biopsy. However, histopathological biopsy can cause unnecessary trauma to patients, and there is a strong subjectivity in the naked eye observation. Therefore, the research of melanoma recognition algorithm based on dermoscope is an urgent need in the medical field. Aiming at the dermoscope image processing with various shapes, colors, sizes and noises, this paper mainly focuses on image noise removal, skin lesion segmentation, The feature extraction of skin lesions and its recognition and classification algorithms are studied and explored. The main content of this paper is: 1. In this paper, the noise removal algorithm and segmentation algorithm for dermoscope images with various noises are studied. Noise removal includes black frames, bubbles and other man-made noise and hair and other inherent noise. The proposed algorithm not only can eliminate noise but also does not introduce a lot of computation. A fusion segmentation algorithm based on Markov random field fusion framework is proposed, which improves the robustness of a single segmentation algorithm. The feature extraction algorithm of dermoscope image is studied and explored. Feature based design is used to extract low-level features of dermatoscopic images, including shape, color and texture features, and feature-based learning is used to extract middle and high level features. For the feature learning method, the sparse coding feature based on SIFT operator is proposed. According to the structural characteristics of the skin lesion region, the algorithm of pool is improved, and the algorithm of ring equal area pool is proposed. The classification algorithm of dermoscope image recognition is studied. The classifier is designed for the low-level feature and middle-high-level feature. In order to make more reasonable and effective use of the two kinds of features, the pre-classification fusion and the post-classification result fusion are carried out, which is the cooperative training method. Finally, the final recognition and classification results are obtained by using the multi-classifier voting mechanism. Based on the criteria of specificity, sensitivity, accuracy and (ROC), the classifier and fusion classifier are evaluated. Experimental results show that the proposed fusion classifier is more specific, sensitive and accurate than that of single feature recognition, and the cross-validation results show that the robustness of the fusion classifier is also improved.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:R739.5;TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 紀(jì)小龍,徐薪,申明識(shí);黏膜黑色素瘤的常見(jiàn)臨床病理特點(diǎn)[J];診斷病理學(xué)雜志;2002年02期
2 李凌,徐慶中;黑色素瘤高頻超聲表現(xiàn)1例[J];中華超聲影像學(xué)雜志;2002年09期
3 陳燁 ,劉敏賢 ,安秀珍 ,林昌萬(wàn) ,姜影;淚囊黑色素瘤1例報(bào)告[J];吉林醫(yī)學(xué);2003年01期
4 蔡振鑫;黑色素瘤:預(yù)測(cè)致死性特征的30年臨床經(jīng)驗(yàn)[J];國(guó)外醫(yī)學(xué).外科學(xué)分冊(cè);2004年02期
5 Helsing P.,Loeb M. ,馮義國(guó);小直徑黑色素瘤:挪威黑色素瘤隨訪項(xiàng)目[J];世界核心醫(yī)學(xué)期刊文摘(皮膚病學(xué)分冊(cè));2005年04期
6 Murray C.S.;Stockton D.L.;Doherty V.R. ;黨倩麗;;增厚的黑色素瘤:長(zhǎng)久面對(duì)的挑戰(zhàn)[J];世界核心醫(yī)學(xué)期刊文摘(皮膚病學(xué)分冊(cè));2005年08期
7 High W.A. ,Quirey R.A. ,Guillén D.R ,R.S. Taylor,劉超;7例甲單元原位黑色素瘤的臨床表現(xiàn)、組織病理和臨床預(yù)后[J];世界核心醫(yī)學(xué)期刊文摘(皮膚病學(xué)分冊(cè));2005年02期
8 Curtin J.A.;Fridlyand J.;Kageshita T. ;B.C. Bastian;黨倩麗;;黑色素瘤不同位置的基因改變[J];世界核心醫(yī)學(xué)期刊文摘(皮膚病學(xué)分冊(cè));2006年02期
9 Blaise S.;Rumeau-Trividic M.;Le Brun V.;周少娜;;黑色素瘤伴亞急性原發(fā)性纖維蛋白溶解[J];世界核心醫(yī)學(xué)期刊文摘(皮膚病學(xué)分冊(cè));2006年04期
10 Weatherhead S.C.;Lawrence C.M. ;潘敏;;黑色素瘤篩查診所:檢出更多的黑色素瘤還是使患者消除顧慮?[J];世界核心醫(yī)學(xué)期刊文摘(皮膚病學(xué)分冊(cè));2006年Z1期
相關(guān)會(huì)議論文 前10條
1 李東;謝遵江;賀業(yè)春;劉穎;劉麗;;在黑色素瘤組織中免疫細(xì)胞的形態(tài)學(xué)觀察[A];中國(guó)解剖學(xué)會(huì)第八屆組織學(xué)與胚胎學(xué)專業(yè)青年研討會(huì)論文集[C];2004年
2 安菊生;吳令英;李寧;俞高志;劉麗影;;原發(fā)女性生殖道黑色素瘤42例臨床分析[A];中華醫(yī)學(xué)會(huì)第九次全國(guó)婦科腫瘤學(xué)術(shù)會(huì)議論文匯編[C];2006年
3 陳陸霞;孫保存;張?jiān)娢?賀忠江;;眼內(nèi)移植性黑色素瘤微循環(huán)模式的初步研究[A];中華醫(yī)學(xué)會(huì)第十二屆全國(guó)眼科學(xué)術(shù)大會(huì)論文匯編[C];2007年
4 楊志濤;陸洪光;;死亡受體和黑色素瘤的抗凋亡作用[A];中華醫(yī)學(xué)會(huì)第14次全國(guó)皮膚性病學(xué)術(shù)年會(huì)論文匯編[C];2008年
5 鐘傳華;楊文治;王曉蘭;;黑色素瘤與痔診治失誤的啟迪[A];2012醫(yī)學(xué)前沿——中華中醫(yī)藥學(xué)會(huì)肛腸分會(huì)第十四次全國(guó)肛腸學(xué)術(shù)交流大會(huì)論文精選[C];2012年
6 郭軍;;黑色素瘤最新進(jìn)展和未來(lái)趨勢(shì)[A];中國(guó)腫瘤內(nèi)科進(jìn)展 中國(guó)腫瘤醫(yī)師教育(2014)[C];2014年
7 孫保存;張?jiān)娢?劉志勇;張丹芳;郭華;;多西環(huán)素影響黑色素瘤微循環(huán)模式的形成[A];第四屆中國(guó)腫瘤學(xué)術(shù)大會(huì)暨第五屆海峽兩岸腫瘤學(xué)術(shù)會(huì)議論文集[C];2006年
8 郭偉;;口腔頜面-頭頸黏膜黑色素瘤的個(gè)體化診治與思考[A];中國(guó)腫瘤內(nèi)科進(jìn)展 中國(guó)腫瘤醫(yī)師教育(2014)[C];2014年
9 孫保存;張丹芳;張?jiān)娢?郭華;張文治;趙秀蘭;;缺血缺氧對(duì)黑色素瘤局部浸潤(rùn)的相關(guān)分子機(jī)制影響的初步研究[A];中華醫(yī)學(xué)會(huì)病理學(xué)分會(huì)2006年學(xué)術(shù)年會(huì)論文匯編[C];2006年
10 唐亮;;手術(shù)治療足跟底部皮膚黑色素瘤6例臨床分析[A];2013年全國(guó)激光醫(yī)學(xué)學(xué)術(shù)聯(lián)合會(huì)議暨2013年浙江省醫(yī)學(xué)會(huì)整形美容學(xué)術(shù)年會(huì)論文匯編[C];2013年
相關(guān)重要報(bào)紙文章 前10條
1 王倫邋王晨;早期發(fā)現(xiàn)黑色素瘤可挽救生命[N];科技日?qǐng)?bào);2007年
2 倪方;黑色素瘤早治療可痊愈(三)[N];醫(yī)藥養(yǎng)生保健報(bào);2008年
3 健康時(shí)報(bào)特約記者 管九蘋;澳大利亞免費(fèi)普查黑色素瘤[N];健康時(shí)報(bào);2010年
4 實(shí)習(xí)生 易立;黑色素瘤,是否無(wú)藥可治?[N];科技日?qǐng)?bào);2011年
5 記者 張e,
本文編號(hào):2151575
本文鏈接:http://sikaile.net/yixuelunwen/pifb/2151575.html