高脂環(huán)境下miR-29c-3p靶向調(diào)節(jié)Dvl2對BMSCs成骨分化機(jī)制研究
[Abstract]:Background: Hyperlipemia is an important risk factor for the occurrence and development of atherosclerosis, osteoporosis, hypertension, coronary heart disease, and stroke. It is one of the most frequent diseases that affect the health of the people. The results show that the hyperlipoidemia has an adverse effect on bone metabolism, bone mineralization, bone mineral density and other bone metabolism, and it is one of the risk factors for osteoporosis. Bone marrow mesenchymal stem cells (BMSCs) play a critical role in the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into the osteoblast-oriented differentiation. In recent years, a large number of studies have shown that microRNAs (microRNAs, miRNAs) play an important biological function in the differentiation of osteogenesis, such as maintaining a balance of bone metabolism. In the early stage of the research group, the rats with high-fat diet were proved to be loose, the bone trabecula is sparse and the arrangement is disordered; the percentage of Ca/ P atoms in the peripheral Ca/ P atoms in the rat implant fed by the high-fat feed is lower than that of the normal feed-fed rats; and the fluorescence quantitative PCR and the Western blot result show that the Dvl2 gene, The expression of the Dvl2 protein is inhibited, indicating that the hyperlipidemia can interfere with the early bone combination of the hyperlipidemic rat implant to a certain extent. The role of Dvl2 in the Wnt/ HCO3-cattenin signal pathway in patients with hyperlipidemia is worth exploring. The Wnt signaling pathway and miRNAs have a large number of cross-signal molecules, and the action target and the specific action mechanism of the Wnt signal pathway are worth exploring deeply. Objective: (1) To observe the expression of Runx2, ALP, SP7, PPAR-1, Dvl2 and targeted regulation of Dvl2-related microRNAs in rat bone marrow stromal stem cells (BMSCs) in high-fat environment. And (2) screening and identifying the microRNAs targeting the Dvl2 by using the target gene prediction software and the double-luciferase reporter gene. (3) To investigate the effect of microRNAs targeting regulation of Dvl2 on the osteogenic differentiation of BMSCs. Methods: (1) The rat bone marrow-derived mesenchymal stem cells were collected and cultured, and the flow cytometry was carried out in the third generation. After 28 days of formation of the bone marrow-derived mesenchymal stem cells, the bone marrow-derived mesenchymal stem cells were cultured for 28 days, respectively, and stained with red and red O-red O, and the osteogenic differentiation ability was observed, and BMSCs were identified for subsequent experiments. The osteogenesis and differentiation of BMSCs were observed with high-fat medium and normal medium for 28 days, and the osteogenic differentiation was observed in 3,5,7,14 and 21 days by RT-PCR, and the expression of Dvl2, ALP, SP7, lipoid-related gene PPAR-1 and Wnt in Wnt signaling pathway was detected by RT-PCR. The expression of miR-21-5p, miR-29c-3p, miR-138-5p, and miR-351-5pmRNA associated with targeted regulation of Dvl2. (2) The target gene prediction software, Target Scan, MicroRNA.org, miRDB, Microcosm Targets and other four miRNA database on-line analysis software is used for bioinformatics prediction and the literature query to obtain the miRNAs that can function with the Dvl2 gene 3 'UTR region as the miR-21-5p, the miR-29c-3p, the miR-138-5p, and the miR-351-5p. The transfection efficiency and the cell proliferation of CCK8 were detected by transfecting the FAM-siRNA with different concentration (10 nm,30 nm,50 nm,100 nm) in vitro. Transfection of miR-21-5p, miR-29c-3p, miR-138-5p, miR-351-5p and the inhibitor in vitro with the screening concentration, the transfection efficiency was detected by RT-PCR after 48 h, the overexpression and low expression of Dvl2 were achieved, and the expression of Dvl2 in BMSCs was detected by Western blot, and the most obvious miRNAs were found. The plasmid vector of the two-luciferase reporter gene was constructed, and the 293T cells were co-transferred with the plasmid vector by the miRNAs-21-5p, the miR-29c-3p, the miR-138-5p, and the miR-351-5p, and the activity of the luciferase was detected by the multi-function microplate reader to verify the targeting and control effects of miRNAs and Dvl2. (3) The expression of bone-related gene Runx2 and ALP was detected by Western blot. Results: (1) The results of flow cytometry showed that the ratio of CD44 positive cells in third generation BMSCs was 96.7%, the ratio of CD45 positive cells was 2.8%, and the ratio of CD90 positive cells was 95.9%. The surface marker antigen of the mesenchymal stem cells is positive, and the cell is BMSCs, and the purity is high. The results showed that BMSCs had the ability to differentiate into the direction of osteogenesis. The results of RT-PCR showed that the expression of Runx2, SP7 and ALPmRNA in the high-fat group was lower than that in the control group, and the expression of PPAR-mRNA in the high-fat group was higher than that of the control group. The difference was significant (P0.05). The miR-21-5p, miR-29c-3p high-fat group and the control group were decreased, and the expression of miR-138-5 pmRNA in the 3,5,7 and 14 days was not significantly different from that in the high-fat group, and the expression of miR-138-5 pmRNA in the control group was significantly higher than that of the control group at 21 days (P0.05). At 3,5 and 7 days, the expression of miR-351-5pmRNA in the control group was not significantly different from that of the high-fat group, and the expression of miR-351-5pmRNA in the control group was lower than that of the control group at 14 and 21 days, and the difference was significant. (2) The higher the observation concentration of the fluorescence microscope, the higher the efficiency of the transfection, the higher the concentration of the CCK8, the higher the proliferation of the cells. The real-time PCR results showed that the expression of the miR-21-5p, the miR-29c-3p, the miR-138-5p, and the miR-351-5p increased by 5-6 times,4-fold,1000-fold and 800-fold, respectively, as compared to the control group. Compared with the control group, the expression was about 3-fold,10-fold,10-fold and 5-fold, respectively. The expression of Dvl2 in miR-21-5p, miR-29c-3p, miR-138-5p, miR-351-5p, miR-138-5p, miR-351-5p was reduced after transfection of miR-21-5p and miR-29c-3p misitics, and the expression of Dvl2 was increased compared to the mimics nc group after the transfection of miR-138-5p and miR-351-5p mmics. The expression of Dvl2 in miR-21-5p, miR-29c-3p, miR-138-5p, and miR-351-5p inhimitor was increased in different degrees after transfection. The results of Western blot showed that the expression of Dvl2 was the most obvious after the transfection of the cells with miR-29c-3pmomics/ inhitor. (3) The results of Western blot show that the level of protein expression of both Runx2 and ALP after transfection of miR-29c-3p mmics is significantly higher than that of the mimics NC group. Conclusion: (1) In high-fat environment, BMSCs differentiated into osteoblasts, miR-21-5p, miR-29c-3p, miR-138-5p, and miR-351-5p participate in the control of the biological activity of bone metabolism and osteoblast in high-fat environment. (2) The miRNAs targeted to the regulation of Dvl2 are miR-29c-3p, and miR-21-5p, miR-138-5p, and miR-351-5p are weak in negative regulation of Dvl2. (3) miR-29c-3p indirectly promotes the differentiation and mineralization of BMSCs by targeting and regulating Dvl2.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R589.2;R580
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 卞泗善;肖毅;徐展望;;骨髓間充質(zhì)干細(xì)胞成骨分化的研究進(jìn)展[J];內(nèi)蒙古中醫(yī)藥;2013年31期
2 王運濤;骨髓間充質(zhì)干細(xì)胞成骨分化調(diào)控的研究進(jìn)展[J];國外醫(yī)學(xué)(生物醫(yī)學(xué)工程分冊);2003年01期
3 井燕;李良;李毅;陳孟詩;吳文超;陳槐卿;劉小菁;;力學(xué)應(yīng)變對大鼠骨髓間充質(zhì)干細(xì)胞增殖和成骨分化能力的影響[J];生物醫(yī)學(xué)工程學(xué)雜志;2006年03期
4 崔向榮;蘇偉;黃釗;覃萬安;;電磁場促進(jìn)骨髓間充質(zhì)干細(xì)胞成骨分化的研究進(jìn)展[J];中國醫(yī)學(xué)物理學(xué)雜志;2011年04期
5 彭飛;鄭亞東;徐西強(qiáng);虞冀哲;吳華;;620nm低能量紅光對骨髓間充質(zhì)干細(xì)胞成骨分化的影響[J];激光生物學(xué)報;2011年03期
6 趙領(lǐng)洲;劉麗;吳織芬;;微米坑/納米管氧化鈦形貌對骨髓間充質(zhì)干細(xì)胞成骨分化的作用[J];醫(yī)學(xué)爭鳴;2012年04期
7 楊姣;夏雷;湯郁;陸化;費小明;;腫瘤壞死因子預(yù)處理促進(jìn)骨髓間充質(zhì)干細(xì)胞成骨分化潛能[J];南京醫(yī)科大學(xué)學(xué)報(自然科學(xué)版);2014年03期
8 王晶;張洹;;-80℃一步法凍存對成人骨髓間充質(zhì)干細(xì)胞成骨分化能力的影響[J];廣東醫(yī)學(xué);2007年03期
9 陳翠平;羅新;;17β-雌二醇對大鼠骨髓間充質(zhì)干細(xì)胞成骨分化的作用[J];中國骨質(zhì)疏松雜志;2007年05期
10 ;骨髓間充質(zhì)干細(xì)胞的成骨分化[J];中國組織工程研究與臨床康復(fù);2010年10期
相關(guān)會議論文 前10條
1 鄭亮;鄭雅元;崔燎;劉鈺瑜;;四羥基二苯乙烯-2-O-β-D-葡萄糖苷對大鼠骨髓間充質(zhì)干細(xì)胞成骨分化的作用及機(jī)制研究[A];中華醫(yī)學(xué)會第七次全國骨質(zhì)疏松和骨礦鹽疾病學(xué)術(shù)會議論文匯編[C];2013年
2 吳江;陳槐卿;K-LP.SUNG;;鈦顆粒負(fù)荷影響骨髓間充質(zhì)干細(xì)胞成骨分化能力的機(jī)理[A];全國首屆青年復(fù)合材料學(xué)術(shù)交流會論文集[C];2007年
3 吳江;陳槐卿;李良;尹光福;K-L P.SUNG;;鈦顆粒負(fù)荷影響骨髓間充質(zhì)干細(xì)胞成骨分化能力的機(jī)理[A];中國復(fù)合材料學(xué)術(shù)研討會論文集[C];2005年
4 陳海嘯;洪盾;萬曉晨;李繼承;;腸毒素C聯(lián)合維生素C對骨髓間充質(zhì)干細(xì)胞成骨分化的影響研究[A];2008年浙江省骨科學(xué)學(xué)術(shù)年會論文匯編[C];2008年
5 袁風(fēng)紅;鄒耀紅;高愷言;俞可佳;;地塞米松對體外人骨髓基質(zhì)細(xì)胞增殖及成骨分化的影響[A];全國自身免疫性疾病專題研討會暨第十一次全國風(fēng)濕病學(xué)學(xué)術(shù)年會論文匯編[C];2006年
6 宋忠臣;束蓉;董家辰;李松;;低氧對牙周膜成纖維細(xì)胞增殖和成骨分化的影響[A];第十次全國牙周病學(xué)學(xué)術(shù)會議論文摘要匯編[C];2014年
7 董家辰;束蓉;宋忠臣;;炎癥微環(huán)境對人牙周膜成纖維細(xì)胞增殖與成骨分化的影響[A];第十次全國牙周病學(xué)學(xué)術(shù)會議論文摘要匯編[C];2014年
8 孫楠;楊力;張振;張樺;陳宏;蔡德鴻;;晚期氧化蛋白產(chǎn)物對大鼠骨髓間充質(zhì)干細(xì)胞增殖及向成骨分化的影響[A];中華醫(yī)學(xué)會第十二次全國內(nèi)分泌學(xué)學(xué)術(shù)會議論文匯編[C];2013年
9 馬雪;孟靜茹;賈敏;王寧;胡靜;周穎;羅曉星;;胰高血糖素樣肽-1類似物對大鼠骨髓間充質(zhì)干細(xì)胞增殖與成骨分化的影響[A];第十一屆全國青年藥學(xué)工作者最新科研成果交流會論文集[C];2012年
10 林和敏;;成骨分化的人臍血間充質(zhì)干細(xì)胞免疫原性研究[A];2013年全國激光醫(yī)學(xué)學(xué)術(shù)聯(lián)合會議暨2013年浙江省醫(yī)學(xué)會整形美容學(xué)術(shù)年會論文匯編[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 龔逸明;microRNAs調(diào)控Satb2介導(dǎo)的骨髓基質(zhì)干細(xì)胞成骨分化的作用研究[D];復(fù)旦大學(xué);2014年
2 李松濤;EphB信號在軸向仿生壓應(yīng)力調(diào)控MSC成骨分化中的作用和機(jī)制研究[D];第三軍醫(yī)大學(xué);2015年
3 方文;純鈦表面WNT信號通路調(diào)控BMSCs成骨分化的機(jī)制研究[D];浙江大學(xué);2014年
4 劉世宇;移植外源性MSCs持久恢復(fù)宿主MSCs功能的機(jī)制研究[D];第四軍醫(yī)大學(xué);2015年
5 張莉;Fgfr2~(S252W/+)小鼠骨量、骨結(jié)構(gòu)特性及BMSCs成骨分化調(diào)控機(jī)制的研究[D];第三軍醫(yī)大學(xué);2015年
6 劉旭杰;材料性質(zhì)調(diào)控干細(xì)胞成骨分化及殼聚糖基骨修復(fù)材料[D];清華大學(xué);2015年
7 文采;多孔礦化水凝膠材料誘導(dǎo)人胚胎干細(xì)胞成骨分化的研究[D];東南大學(xué);2015年
8 吳毛;胸腰段椎體骨折形態(tài)與椎管狹窄相關(guān)性研究及Sclerostin對成骨分化的影響[D];蘇州大學(xué);2016年
9 黃江;激活HIF-1α對骨折愈合的影響及誘導(dǎo)miR-429對MC3T3-E1細(xì)胞成骨分化的作用機(jī)制[D];首都醫(yī)科大學(xué);2016年
10 侯秋科;龜板有效成分促間充質(zhì)干細(xì)胞成骨分化的miRNA-VDR網(wǎng)絡(luò)機(jī)制[D];廣州中醫(yī)藥大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 吳小瑩;腦源性神經(jīng)營養(yǎng)因子對人脂肪干細(xì)胞增殖與成骨分化的作用[D];北京協(xié)和醫(yī)學(xué)院;2015年
2 秦子順;淫羊藿苷對人牙周膜干細(xì)胞的增殖和成骨分化的影響[D];蘭州大學(xué);2015年
3 劉可;miR-106bE靶向調(diào)控BMP2參與間充質(zhì)干細(xì)胞成骨分化與體內(nèi)骨形成[D];蘇州大學(xué);2015年
4 付雪杰;MSCs與去分化MSCs在成骨分化過程中免疫原性上調(diào)的研究[D];蘇州大學(xué);2015年
5 崔陽陽;蛋白激酶C在小鼠骨髓間充質(zhì)干細(xì)胞成骨分化中的作用研究[D];新鄉(xiāng)醫(yī)學(xué)院;2015年
6 嚴(yán)一杰;體外誘導(dǎo)人腎間質(zhì)成纖維細(xì)胞成骨分化的實驗研究[D];廣西醫(yī)科大學(xué);2015年
7 高羽萱;直流微電場對種植體周骨髓間充質(zhì)干細(xì)胞遷移和成骨影響的研究[D];中國人民解放軍醫(yī)學(xué)院;2015年
8 郭中豪;甲狀旁腺激素對大鼠骨髓間充質(zhì)干細(xì)胞成骨分化的影響[D];山西醫(yī)科大學(xué);2015年
9 李慧垠;高脂環(huán)境下大鼠BMSCs成骨分化過程中Wnt通路相關(guān)因子的表達(dá)變化[D];山東大學(xué);2015年
10 聶曉萌;MicroRNA靶向Id1對BMSCs成骨分化的影響[D];山東大學(xué);2015年
,本文編號:2507960
本文鏈接:http://sikaile.net/yixuelunwen/nfm/2507960.html