高血糖導(dǎo)致小腸電節(jié)律紊亂及小腸電刺激對(duì)2型糖尿病血糖調(diào)控的研究
[Abstract]:First, research background and objective gastrointestinal tract is an important endocrine organ of the human body. Gastrointestinal function is of great significance for the regulation of blood sugar. On the one hand, high blood sugar can affect gastrointestinal motility, cause nausea, vomiting, abdominal pain, fullness and other discomfort symptoms, affect blood sugar control; on the other hand, gastrointestinal motility changes affect nutrient absorption and gastrointestinal Hormone secretion can also cause blood sugar changes. So the treatment of gastrointestinal motility can be used to interfere with hyperglycemia. The gastrointestinal myoelectric activity is closely related to gastrointestinal motility. At present, hyperglycemia can cause gastroelectric disorder. However, the measurement of small intestinal myoelectric activity is difficult, and whether hyperglycemia can cause the study of intestinal rhythmic disorders is the most important. Less. Autonomic nervous dysfunction is also an important complication of diabetic patients, but its role in hyperglycemic induced intestinal dysrhythmicity is not yet known. Therefore, this study explored the effects and mechanisms of hyperglycemia on small intestinal myoelectric activity, as well as the use of autonomic nerves in the intestinal electromyography. Electrical stimulation (IES) can affect gastrointestinal motility, secretion of gastrointestinal hormones, absorption of nutrients, and loss of weight, which is expected to become one of the new treatments for patients with type 2 diabetes. (1) in the model of type 2 diabetes, the acute and chronic effects of IES on blood glucose are explored; (2) from gastrointestinal motility, gastrointestinal hormones, appetite, body weight, pancreas Island function and other aspects of the possible mechanisms for IES to play a hypoglycemic effect. Two, method 1, hyperglycemia induced small intestinal dysregulation with autonomic dysfunction (1) experimental animals: male spontaneous diabetes Goto-Kakizaki (GK) rats and control Wistar Kyoto (WKY) rats; all rats were treated with duodenal electrode implantation before experiment and Subcutaneous electrocardiogram electrode implantation. (2) recording small intestinal myoelectric activity and electrocardiogram. (1) spectrum analysis of small intestinal myoelectric activity and electrocardiogram. The main parameters include the main frequency of slow wave (DF), the main power (DP), the percentage of normal small intestinal slow wave frequency (%of NSW), the number of fast wave front potential per minute. (2) analysis of the center rate of electrocardiogram at the same time HRV, extracting low frequency (LF) and high frequency (HF) signals and calculating the LF/HF ratio to evaluate autonomic function. (3) determination of glycated hemoglobin level (Hb A1c) and oral glucose tolerance test (OGTT) at different time points. Calculate the area of blood glucose under the blood sugar curve (AUC). (4) another group of WKY rats give injection of glucagon to simulate hyperglycemia Changes in blood sugar and small intestine electric rhythm and changes in autonomic nervous function of the heart. (5) analysis of the correlation between blood glucose level and small intestinal rhythm regulation.2, the acute effect and mechanism of small intestinal electrical stimulation on the regulation of blood glucose in type 2 diabetic rats (1) experimental animals: 20 male rats, 10 WKY rats, and duodenal electricity before the test. Extremely burial operation, the electrode traverse of the rat's neck subcutaneous and external stimulator. (2) group: select two groups of stimulation parameters and no stimulation state (Sham group) to compare the effect of hypoglycemic. Parameters 1 groups: wave width 3MS, amplitude 2mA, pulse 0.6s on, 0.9s off, frequency 40Hz, this parameter is considered to be able to change the gastrointestinal motility. Parameter 2: wave width 0.3ms, and the rest and reference The parameters were 1 the same, and the parameters were considered to be able to improve the autonomic nerve activity. And the Sham group was used as a control. The following study was conducted in the two groups of the most effective parameters. (3) OGTT, 0,15,30,60120180min blood glucose, and acute IES hypoglycemic effect. 0,30,60120min blood insulin, glucagon like peptide 1 (GLP) was measured by the ELISA method in the tail vein. -1) level. (4) insulin tolerance test (ITT), determination of 0,30,60120min blood sugar and the effect of acute IES on insulin sensitivity. (5) acute IES combined with GLP-1 antagonists, observation of blood glucose changes in OGTT, and the role of GLP-1 in acute IES. (6) the effect of acute IES on gastric emptying and small intestinal transport is.3, small intestinal electrical stimulation to type 2 diabetes mellitus The chronic effect and mechanism of blood glucose regulation in rats (1) experimental animals: 20 male GK rats and 10 WKY rats, a pair of electrodes were embedded in the duodenum, and the electrode wire was connected to the stimulator by external tether system. (2) the GK rats were divided into IES and Sham groups randomly: (1) the IES group received continuous 12h continuous stimulation for 8 weeks (0.6s). On, 0.9s off, 40Hz, 3MS, 2m A). (2) the difference between the Sham group and the WKY group was not stimulated. The difference between the IES and Sham group was compared. (3) the BioDAQ eating monitoring system continuously and automatically monitored the daily feeding status of the rats. (4) the body weight and the fasting blood glucose were monitored every week. (5) the baseline, 4 weeks, and 8 weeks of blood glucose differences were compared. (6) baseline and 8 weeks C, ITT, (7) eighth weeks OGTT synchronous blood sampling for insulin, GLP-1 level. (8) the effect of chronic IES on pancreatic weight, islet morphology, and beta cell number. Three, 1, high blood sugar induced intestinal dysregulation with autonomic dysfunction (1) diabetic rats, OGTT: blood glucose and AUC were significantly higher than normal rats. (2) the fasting and postprandial small intestine in diabetic rats The regularity of electrical rhythm decreased (P0.001). (3) the activity of vagus and the sympathetic vagus balance index increased (P0.05) in diabetic rats. (4) the regularity of the slow wave of the small intestine in diabetes and normal rats was negatively correlated with the HbA1c level (r=-0.663, P=0.000). (5) the temporary glucose increased in normal rats induced by glucagon injection, resulting in the slow wave of the small intestine. (6) after injection of glucagon, the normal rat vagus activity decreased and the sympathetic vagus balance index increased. (7) after the injection of glucagon, the increase of blood glucose was negatively correlated with the regularity of the slow wave of the small intestine (r=-0.739, P=0.015).2. The acute effect and mechanism of small bowel electrospiny on the regulation of blood glucose in type 2 diabetic rats (1) and S Group ham compared: (1) group IES-3ms significantly reduced pre OGTT 30min blood sugar (P0.001). (2) 60min~120min, IES-3ms and IES-0.3ms reduced blood sugar 16-20% (P0.05). (3) two ginseng array OGTT glucose AUC was no difference. (2) blood glucose level: neither group nor the difference in insulin sensitivity. (3) antagonist antagonist blocking the effect of hypoglycemic effect (P0.05) (4) IES increased 30min GLP-1 secretion and insulin secretion after sugar load (P0.05). (5) acute IES-3ms, accelerated intestinal transport (P=0.004), but did not change gastric emptying. (three) the chronic effect and mechanism of small intestinal electrical stimulation on the regulation of blood glucose in type 2 diabetic rats (1) glucose after sugar load: (1) the 4 weekend, IES only reduced 30min blood sugar (P) (0.05) (2) for the 8 week of treatment, IES significantly reduced 15min-120min blood glucose 20-30% (15min and 30min P0.02,60min, 90min and 120min P0.01). (3) 0min glucose decreased by 13% (P0.02) and 22% of blood glucose decreased (2). (sixth weekend, eighth weekend, seventh weekend). Weight loss 10% (P0.05), but no significant effect on appetite (P0.05). (4) HbA1c:IES significantly reduced HbA1c level 6% (P0.05), HbA1c changes were not related to weight loss (R~2=0.153, P0.05). (5) blood GLP-1 and insulin levels: 8 weeks of treatment at the end of the treatment, IES group empty and OGTT 30min. But there was no change in the area under the insulin curve (P0.05). (6) pancreas weight: the weight of the pancreas in group Sham was significantly lower than that in group WKY (P0.05). The weight of pancreas in group IES was not different from that in group WKY. (7) the form and function of pancreatic islet: in a certain range, chronic IES could raise the number of islet beta cells, restore the morphology and structure of the islets, and regulate the alpha and beta Cell ratio. Four, conclusion 1, spontaneous hyperglycemia and glucagon induced hyperglycemia all lead to the disturbance of small intestinal myoelectric activity. The impairment of autonomic nervous function may be involved in high glucose induced intestinal dysregulation of.2, and acute IES: can reduce glucose after glucose load in type 2 diabetic rats. Its hypoglycemic effect may be mediated by GLP-1. Both intestinal motility and autonomic nerve regulation are involved in the role of IES in.3. Chronic IES: can reduce postprandial and fasting blood glucose, and its hypoglycemic effect may improve the function of islet beta cells by regulating the secretion of GLP-1.
【學(xué)位授予單位】:南京醫(yī)科大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:R587.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 屠昕;;2型糖尿病住院患者血糖漏測(cè)原因分析與對(duì)策[J];護(hù)理學(xué)報(bào);2012年10期
2 王曉東;彭宙;陸云江;敖洪萍;;2型糖尿病患者進(jìn)行動(dòng)態(tài)血糖監(jiān)測(cè)的臨床研究[J];內(nèi)蒙古中醫(yī)藥;2013年06期
3 潘全民;;老年2型糖尿病患者步行前后血糖變化分析[J];東南國(guó)防醫(yī)藥;2013年05期
4 王午喜;;如何滿(mǎn)意控制血糖[J];家庭醫(yī)藥;2010年07期
5 張琪;;血糖監(jiān)測(cè)十大技巧[J];糖尿病新世界;2011年05期
6 劉新;;我測(cè)血糖測(cè)上癮[J];糖尿病新世界;2011年09期
7 ;血糖監(jiān)測(cè)不要掉進(jìn)誤區(qū)[J];醫(yī)藥與保健;2012年01期
8 韋祟煥,李彩霞,李云霞;25例急性一氧化碳中毒患者血糖變化觀(guān)察[J];甘肅科技;2000年03期
9 駱雪萍;危重患者血糖水平的變化及其臨床意義[J];中原醫(yī)刊;2000年05期
10 陳大堯,秦文喜;飲酒對(duì)血糖影響的分析[J];醫(yī)學(xué)文選;2000年03期
相關(guān)會(huì)議論文 前10條
1 王志強(qiáng);;20例糖尿病患者連續(xù)動(dòng)態(tài)血糖監(jiān)測(cè)觀(guān)察[A];第九次全國(guó)中醫(yī)糖尿病學(xué)術(shù)大會(huì)論文匯編[C];2006年
2 李全忠;;血糖監(jiān)測(cè)的意義[A];河南省護(hù)理學(xué)會(huì)糖尿病及腹膜透析護(hù)理新進(jìn)展學(xué)術(shù)交流研討班資料匯編[C];2007年
3 包玉倩;;動(dòng)態(tài)血糖監(jiān)測(cè)的臨床應(yīng)用拓展[A];中華醫(yī)學(xué)會(huì)第十次全國(guó)內(nèi)分泌學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2011年
4 鞏純秀;米杰;曹冰燕;;北京地區(qū)兒童青少年血糖分布特征[A];2008內(nèi)分泌代謝性疾病系列研討會(huì)暨中青年英文論壇論文匯編[C];2008年
5 徐揚(yáng);周健;姚海軍;陸蔚;奚才華;孫一睿;王爾松;劉永;田恒力;賈偉平;胡錦;;神經(jīng)外科重癥患者的動(dòng)態(tài)血糖監(jiān)測(cè)[A];中國(guó)醫(yī)師協(xié)會(huì)神經(jīng)外科醫(yī)師分會(huì)第四屆全國(guó)代表大會(huì)論文匯編[C];2009年
6 張磊;周健;陸蔚;包玉倩;賈偉平;;動(dòng)態(tài)血糖監(jiān)測(cè)報(bào)告管理系統(tǒng)的建立與應(yīng)用[A];中華醫(yī)學(xué)會(huì)糖尿病學(xué)分會(huì)第十六次全國(guó)學(xué)術(shù)會(huì)議論文集[C];2012年
7 李德霞;;正常健康人動(dòng)態(tài)血糖監(jiān)測(cè)臨床研究[A];2011年河南省糖尿病護(hù)理管理與教育暨學(xué)術(shù)交流會(huì)論文集[C];2011年
8 王玉萍;金明;;血糖監(jiān)測(cè)表的設(shè)計(jì)與臨床應(yīng)用[A];全國(guó)第6屆糖尿病護(hù)理學(xué)術(shù)交流暨專(zhuān)題講座會(huì)議、全國(guó)第6屆血液凈化護(hù)理學(xué)術(shù)交流暨專(zhuān)題講座會(huì)議論文匯編[C];2008年
9 梁茜;武美榮;;33例使用動(dòng)態(tài)血糖監(jiān)測(cè)患者的護(hù)理[A];2012中國(guó)中西醫(yī)結(jié)合學(xué)會(huì)急救醫(yī)學(xué)專(zhuān)業(yè)委員會(huì)學(xué)術(shù)年會(huì)論文集[C];2012年
10 黃一鑫;于雪梅;馮萍;金慧英;;早餐膳食成分的改變對(duì)2型糖尿病血糖的影響[A];2008年浙江省內(nèi)分泌學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2008年
相關(guān)重要報(bào)紙文章 前10條
1 四川大學(xué)華西醫(yī)院內(nèi)分泌科主任 田浩明;“糖娃”開(kāi)學(xué)后血糖易波動(dòng)[N];健康時(shí)報(bào);2007年
2 何冬;如何把握測(cè)血糖的頻率[N];醫(yī)藥養(yǎng)生保健報(bào);2007年
3 上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院內(nèi)分泌科主任 陸穎理;測(cè)血糖測(cè)夠五個(gè)“點(diǎn)”[N];健康時(shí)報(bào);2008年
4 山東省濟(jì)南醫(yī)院糖尿病診療中心副主任醫(yī)師 王建華;撩開(kāi)“動(dòng)態(tài)血糖監(jiān)測(cè)”的面紗[N];醫(yī)藥經(jīng)濟(jì)報(bào);2011年
5 董飛俠;掌握三點(diǎn)控制血糖[N];大眾科技報(bào);2005年
6 程守勤;合理運(yùn)動(dòng)有助控制血糖[N];家庭醫(yī)生報(bào);2008年
7 曾理;血糖不穩(wěn),最好不要蒸桑拿[N];健康時(shí)報(bào);2007年
8 中日友好醫(yī)院內(nèi)分泌科 邢小燕;血糖監(jiān)測(cè)要“點(diǎn)”“線(xiàn)”結(jié)合[N];健康時(shí)報(bào);2008年
9 鄭帆影;青春期要嚴(yán)控血糖[N];健康時(shí)報(bào);2006年
10 北京大學(xué)人民醫(yī)院教授 紀(jì)立農(nóng) 上海交通大學(xué)醫(yī)學(xué)院瑞金醫(yī)院教授 寧光;加強(qiáng)我國(guó)醫(yī)院內(nèi)血糖管理須軟硬兼施[N];健康報(bào);2009年
相關(guān)博士學(xué)位論文 前4條
1 汪新良;急診常見(jiàn)臨床指標(biāo)在急性心力衰竭分型診斷和預(yù)后中的作用探討[D];南方醫(yī)科大學(xué);2015年
2 袁甲翔;嚴(yán)格血糖控制對(duì)胃切除術(shù)后腸內(nèi)營(yíng)養(yǎng)的糖尿病患者的影響及其機(jī)制的探討[D];鄭州大學(xué);2016年
3 歐陽(yáng)曉俊;高血糖導(dǎo)致小腸電節(jié)律紊亂及小腸電刺激對(duì)2型糖尿病血糖調(diào)控的研究[D];南京醫(yī)科大學(xué);2015年
4 夏城東;血糖相關(guān)因素對(duì)血管內(nèi)皮功能的影響及川芎嗪的干預(yù)研究[D];中國(guó)中醫(yī)科學(xué)院;2009年
相關(guān)碩士學(xué)位論文 前10條
1 卓俊騏;用于實(shí)驗(yàn)動(dòng)物的植入式血糖測(cè)量系統(tǒng)的研究[D];北京協(xié)和醫(yī)學(xué)院;2015年
2 安邦;基于最小二乘法AR模型在血糖預(yù)測(cè)中的研究[D];鄭州大學(xué);2015年
3 成巍;冠心病患者血漿同型半胱氨酸與血糖的相關(guān)性臨床研究[D];山西醫(yī)科大學(xué);2015年
4 王攀;甲狀腺功能亢進(jìn)癥患者24小時(shí)動(dòng)態(tài)血糖譜特點(diǎn)分析[D];山西醫(yī)科大學(xué);2015年
5 寧黃江;基于經(jīng)濟(jì)博弈的雙激素血糖控制[D];北京化工大學(xué);2015年
6 雷星;胃大部切除術(shù)對(duì)2型糖尿病患者血糖的影響[D];延安大學(xué);2015年
7 錢(qián)鳳文;OSAHS對(duì)高血壓患者血壓與血糖的影響[D];天津醫(yī)科大學(xué);2015年
8 冉旭;重癥手足口病患兒的血糖監(jiān)測(cè)及其對(duì)預(yù)后評(píng)價(jià)的意義研究[D];青島大學(xué);2015年
9 鄒富利;膿毒癥患兒血糖的臨床研究[D];重慶醫(yī)科大學(xué);2015年
10 喻成俠;面向人工胰臟的快速建模方法與血糖預(yù)測(cè)研究[D];浙江大學(xué);2016年
,本文編號(hào):2169438
本文鏈接:http://sikaile.net/yixuelunwen/nfm/2169438.html