大鼠骨髓源性內(nèi)皮祖細(xì)胞(EPCs)體外培養(yǎng)對(duì)人臍靜脈內(nèi)皮細(xì)胞(HUVEC)增殖的影響及黃芪多糖(APS)干預(yù)的研究
本文選題:內(nèi)皮祖細(xì)胞 + 黃芪多糖; 參考:《貴陽(yáng)中醫(yī)學(xué)院》2015年碩士論文
【摘要】:目的:1.觀察黃芪多糖(Astragalus Polysaccharides,APS)體外干預(yù)培養(yǎng)對(duì)大鼠骨髓源性內(nèi)皮祖細(xì)胞(Endothelial Progenitor Cells,EPCs)數(shù)量、遷移、黏附、增殖、周期分布及分化的影響。2.觀察APS體外干預(yù)大鼠骨髓源性EPCs共培養(yǎng)對(duì)人臍靜脈內(nèi)皮細(xì)胞(Human Umbilical Vein Endothelial Cells,HUVEC)增殖的影響。方法:1.取雄性Wistar大鼠予以水合氯醛腹腔注射麻醉,脫頸處死,將其股骨、脛骨、胸骨、肱骨取出,用PBS緩沖液沖洗骨髓腔,采用密度梯度離心法分離大鼠骨髓源性單個(gè)核細(xì)胞,培養(yǎng)7天以后收集貼壁細(xì)胞。采用多波長(zhǎng)激光共聚焦顯微鏡對(duì)貼壁細(xì)胞進(jìn)行鑒定,采用流式細(xì)胞術(shù)檢測(cè)貼壁細(xì)胞的表型。收集大鼠骨髓源性EPCs,將其隨機(jī)分為6組:設(shè)立對(duì)照組;其他組為APS各濃度組(共5組),于DMEM(低糖)培養(yǎng)基中加入終濃度為0.05mg/ml、0.1mg/ml、0.2mg/ml、 0.4mg/ml、0.8mg/ml的APS培養(yǎng)24h,其中APS濃度為0.4mg/ml組予以不同時(shí)間(Oh、6h、12h、24h、48h)進(jìn)行培養(yǎng)。倒置顯微鏡觀察每組大鼠骨髓源性EPCs并進(jìn)行計(jì)數(shù);Transwell小室培養(yǎng)檢測(cè)大鼠骨髓源性EPCs的遷移數(shù)量;黏附能力實(shí)驗(yàn)檢測(cè)大鼠骨髓源性EPCs的黏附數(shù)量;MTT增殖實(shí)驗(yàn)檢測(cè)大鼠骨髓源性EPCs的增殖;流式細(xì)胞術(shù)檢測(cè)大鼠骨髓源性EPCs的細(xì)胞周期的分布和分化。2.分離培養(yǎng)大鼠骨髓源性EPCs,7天后收集貼壁細(xì)胞,取樣進(jìn)行染色和流式鑒定,待細(xì)胞表達(dá)符合標(biāo)準(zhǔn)后,建立Transwell共培養(yǎng)體系,設(shè)立對(duì)照組,將大鼠骨髓源性EPCs與HUVEC予以DMEM(低糖)培養(yǎng)基共培養(yǎng),并予以APS各濃度(0.05mg/ml、0.1mg/ml、0.2mg/ml、0.4mg/ml、0.8mg/ml)干預(yù)共培養(yǎng)24h后,MTT增殖實(shí)驗(yàn)檢測(cè)APS各濃度干預(yù)共培養(yǎng)后HUVEC的增殖;其中APS濃度為0.4mg/ml組予以干預(yù)共培養(yǎng)不同時(shí)間(Oh、6h、12h、24h、48h),MTT增殖實(shí)驗(yàn)檢測(cè)共培養(yǎng)各時(shí)間點(diǎn)HUVEC的增殖。結(jié)果:(1)APS體外干預(yù)培養(yǎng)對(duì)大鼠骨髓源性EPCs數(shù)量的影響:APS能明顯增加大鼠骨髓源性EPCs的數(shù)量,并且呈一定的量效和時(shí)效關(guān)系,APS濃度為0. Olmg/ml時(shí),其數(shù)量較對(duì)照組開(kāi)始增加(P0.05),APS濃度為0.4mg/ml時(shí)達(dá)到最佳效應(yīng)(P0.01);APS濃度為0.4mg/ml干預(yù)培養(yǎng)12h后,其數(shù)量明顯增加(P0.01),24h達(dá)到最佳效應(yīng)(P0.01),48h稍有下降,但仍然優(yōu)于對(duì)照組(P0.01)。(2)APS體外干預(yù)培養(yǎng)對(duì)大鼠骨髓源性EPCs遷移能力的影響:APS能明顯提高大鼠骨髓源性EPCs的遷移能力,并且呈一定的量效和時(shí)效關(guān)系,AAPS濃度為0.1mg/ml時(shí),其遷移數(shù)量較對(duì)照組開(kāi)始增加(P0.05),APS濃度為0.4mg/ml時(shí)達(dá)到最佳效應(yīng)(P0.01);APS濃度為0.4mg/ml干預(yù)培養(yǎng)6h后,其遷移數(shù)量開(kāi)始增加(P0.05),24h達(dá)到最佳效應(yīng)(P0.01),48h稍有下降,但仍然優(yōu)于對(duì)照組(P0.01)。(3)APS體外干預(yù)培養(yǎng)對(duì)大鼠骨髓源性EPCs增殖能力的影響:APS能明顯提高大鼠骨髓源性EPCs增殖的能力,并且呈一定的量效和時(shí)效關(guān)系,APS濃度為0.05mg/ml時(shí),其增殖能力較對(duì)照組開(kāi)始增加(P0.05),APS濃度為0.4mg/ml時(shí)達(dá)到最佳效應(yīng)(P0.01);APS濃度為0.4mg/ml干預(yù)培養(yǎng)6h后,其增殖能力開(kāi)始增加(P0.05),24h達(dá)到最佳效應(yīng)(P0.01),48h稍有下降,但仍然優(yōu)于對(duì)照組(P0.01)。(4) APS體外干預(yù)培養(yǎng)對(duì)大鼠骨髓源性EPCs周期分布的影響:APS濃度為0.1mg/ml時(shí),G0/G1期大鼠骨髓源性EPCs的比例開(kāi)始減少(P0.05),而S期和G2期的大鼠骨髓源性EPCs比例開(kāi)始增加(P0.05),APS濃度為0.4mg/ml時(shí)達(dá)最佳效應(yīng)(P0.01)。(5) APS體外干預(yù)培養(yǎng)對(duì)大鼠骨髓源性EPCs分化的影響:APS濃度為0.2mg/ml時(shí)開(kāi)始促進(jìn)大鼠骨髓源性EPCs向內(nèi)皮細(xì)胞系方向分化,其表達(dá)單核/巨噬細(xì)胞表而標(biāo)志(CD14+和CD64+)細(xì)胞百分比與對(duì)照組相比降低(P0.05或P0.01),而內(nèi)皮細(xì)胞特異性標(biāo)志(vWF+)細(xì)胞百分比與對(duì)照組相比升高(P0.05),APS濃度為0.4mg/ml時(shí)達(dá)最佳效應(yīng)(P0.01)。(6)Transwell間接共同培養(yǎng)條件下APS干預(yù)大鼠骨髓源性EPCs對(duì)HUVEC增殖能力的影響:在APS不同濃度和不同時(shí)間體外干預(yù)下呈一定的量效和時(shí)效關(guān)系。APS體外干預(yù)培養(yǎng)HUVEC與對(duì)照組相比HUVEC增殖能力明顯增加(P0.01);大鼠骨髓源性EPCs和HUVEC共培養(yǎng)與對(duì)照組相比HUVEC增殖能力增加(P0.01);APS體外干預(yù)大鼠骨髓源性EPCs和HUVEC共培養(yǎng)與APS體外干預(yù)培養(yǎng)HUVEC相比HUVEC增殖能力明顯增加(P0.01)。APS (0.4mg/ml)干預(yù)大鼠骨髓源性EPCs共培養(yǎng)不同時(shí)間與對(duì)照組相比HUVEC增殖能力增加(P0.05或P0.01),而且呈一定的時(shí)間依賴性,于24h達(dá)到最佳效應(yīng)。結(jié)論:(1)APS體外干預(yù)大鼠骨髓源性EPCs能增加其數(shù)量,促進(jìn)其遷移、黏附、增殖,且呈一定的濃度及時(shí)間依賴性。(2)APS體外干預(yù)大鼠骨髓源性EPCs能使其G0/G1期的細(xì)胞比例減少,而S期和G2期細(xì)胞比例增加。(3)APS體外干預(yù)大鼠骨髓源性EPCs能使其表達(dá)的單核/巨噬細(xì)胞表而標(biāo)志(CD14+、CD64+)細(xì)胞百分比降低,內(nèi)皮細(xì)胞特異性標(biāo)志(vWF+)細(xì)胞百分比明顯升高。(4)APS體外干預(yù)大鼠骨髓源性EPCs與HUVEC共培養(yǎng)能明顯促進(jìn)HUVEC的增殖,且呈一定的濃度及時(shí)間依賴性變化。
[Abstract]:Objective: 1. to observe the effect of Astragalus Polysaccharides (APS) on the quantity, migration, adhesion, proliferation, periodic distribution and differentiation of Endothelial Progenitor Cells (EPCs) in vitro, and the effect of.2. observation on human umbilical vein endothelial cells (Human Um) in vitro (Human Um) in vitro. The effects of the proliferation of bilical Vein Endothelial Cells, HUVEC). Methods: 1. the male Wistar rats were injected with chloral hydrate in the abdominal cavity, and the femur, tibia, sternum, humerus were removed, and the bone marrow cavity was washed with PBS buffer, and the bone marrow derived mononuclear cells were separated by density gradient centrifugation and collected for 7 days after culture. Mural cells were identified by multi wavelength laser confocal microscopy. The phenotype of adherent cells was detected by flow cytometry. The rat bone marrow derived EPCs was collected and divided into 6 groups randomly: the control group was set up; the other groups were APS concentration groups (5 groups), and the final concentration in the DMEM (low sugar) medium was 0.05mg/ml, 0.1mg/ml, The APS of 0.2mg/ml, 0.4mg/ml and 0.8mg/ml was cultured in 24h, in which the concentration of APS was cultured in group 0.4mg/ml (Oh, 6h, 12h, 24h, 48h). The bone marrow origin of rats in each group was observed and counted by inverted microscope. The adhesion quantity of PCs; MTT proliferation test to detect the proliferation of rat bone marrow derived EPCs; flow cytometry to detect the distribution of cell cycle of bone marrow derived EPCs in rats and differentiation and differentiation of.2. to culture rat bone marrow derived EPCs. 7 days later, the adherent cells were collected and sampled for staining and flow identification. After the cell expression was conformed to the standard, a common Transwell was established. The rat bone marrow derived EPCs and HUVEC were co cultured with DMEM (low sugar) medium, and the concentration of APS (0.05mg/ml, 0.1mg/ml, 0.2mg/ml, 0.4mg/ml, 0.8mg/ml) was co cultured for 24h, and MTT proliferation experiment was conducted to detect the proliferation of APS each concentration. A total of different time (Oh, 6h, 12h, 24h, 48h) and MTT proliferation test were used to detect the proliferation of HUVEC in each time point. Results: (1) the effect of APS in vitro intervention on the number of bone marrow derived EPCs in rats: APS can significantly increase the number of bone marrow derived EPCs in rats, and a certain dose effect and aging relationship, when APS concentration is 0. As compared with the control group (P0.05), the optimal effect (P0.01) was reached when the concentration of APS was 0.4mg/ml; APS concentration increased significantly (P0.01) after 0.4mg/ml intervention for 12h, 24h reached the best effect (P0.01), and 48h had a slight decrease, but it was still better than the control group (P0.01). (2) the effect of in vitro intervention on the ability of bone marrow derived migration in rats APS could significantly improve the migration ability of rat bone marrow derived EPCs, and showed a certain dose effect and aging relationship. When the concentration of AAPS was 0.1mg/ml, the number of migration began to increase compared with the control group (P0.05). The APS concentration was 0.4mg/ml when the concentration was 0.4mg/ml, and the concentration of APS was 0.4mg /ml, and the number of migration began to increase. To the best effect (P0.01), 48h was slightly decreased, but still better than the control group (P0.01). (3) the effect of APS in vitro intervention on the proliferation of bone marrow derived EPCs in rats: APS could significantly improve the ability of rat bone marrow derived EPCs proliferation, and showed a certain dose effect and aging system. When APS concentration was 0.05mg/ml, its proliferation ability began to begin with the control group. Increase (P0.05), APS concentration was 0.4mg/ml to reach the best effect (P0.01); APS concentration was 0.4mg/ml intervention culture 6h, the proliferation ability began to increase (P0.05), 24h reached the best effect (P0.01), 48h slightly decreased, but still better than the control group (P0.01). (4) At 0.1mg/ml, the proportion of bone marrow derived EPCs in G0/G1 rats began to decrease (P0.05), while the proportion of bone marrow derived EPCs in S and G2 rats began to increase (P0.05), and APS concentration was 0.4mg/ml. (P0.01). (5) the effect of intervention on bone marrow derived differentiation of rats in vitro The source EPCs differentiated into the endothelial cell line, and the percentage of the expression of mononuclear / macrophage markers (CD14+ and CD64+) decreased (P0.05 or P0.01) compared with the control group (P0.05 or P0.01), while the percentage of endothelial cell specific markers (vWF+) increased (P0.05) and APS concentration was 0.4mg/ml (P0.01). (6) Transwell indirect The effect of APS intervention on the proliferation of HUVEC in rat bone marrow EPCs under common culture conditions: a certain dose effect and aging relationship under the intervention of different concentrations and different times of APS in vitro.APS increased the proliferation ability of HUVEC in vitro compared with the control group (P0.01), and the co culture and control of rat bone marrow derived EPCs and HUVEC were compared with the control group (P0.01). The proliferation ability of the group was increased compared with the HUVEC (P0.01), and the proliferation ability of the bone marrow derived EPCs and HUVEC in the rat in vitro was significantly increased (P0.01).APS (P0.01).APS (0.4mg/ml), compared with the APS in vitro, and the proliferation ability of the bone marrow derived EPCs co culture of rats was increased at different times. The time dependence of 24h reached the best effect. Conclusion: (1) in vitro, APS intervention in rat bone marrow derived EPCs can increase its number, promote its migration, adhesion, proliferation, and have a certain concentration and time dependence. (2) APS in vitro intervention in rat bone marrow derived EPCs can reduce the proportion of cells in the G0/ G1 phase, while the proportion of S phase and G2 phase increases. 3) APS in vitro intervention in rat bone marrow derived EPCs could reduce the percentage of the expression of mononuclear / macrophage (CD14+, CD64+) cells and increase the percentage of endothelial cell specific markers (vWF+) cells. (4) APS in vitro intervention in rat bone marrow derived EPCs and HUVEC co culture can significantly promote the proliferation of HUVEC, and present a certain concentration in time. Inter dependent change.
【學(xué)位授予單位】:貴陽(yáng)中醫(yī)學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:R587.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李然;方靖琴;陳曉;郭宇;艾華;張偉國(guó);;EPCs示蹤大鼠腦原位膠質(zhì)瘤的動(dòng)態(tài)MRI研究[J];磁共振成像;2014年04期
2 王雪梅;鄧明明;;EPCs與肝硬化門(mén)脈高壓癥的關(guān)系及其治療展望[J];實(shí)用醫(yī)學(xué)雜志;2012年24期
3 Xin-Peng Cong;Wen-Hui Wang;Xi Zhu;Can Jin;Liang Liu;Xin-Min Li;;Silence of STIM1 attenua=tes the proliferation and migration of EPCs after vascular injury and its mechanism[J];Asian Pacific Journal of Tropical Medicine;2014年05期
4 劉超;郭朋舉;李圣博;姚星星;焦周陽(yáng);文冰;許華山;趙文增;;Combined Use of Transmyocardial Laser Revascularization and Endothelial Progenitor Cells Enhances Neovascularization and Regional Contractility in a Canine Model of Ischemic Hearts[J];Journal of Huazhong University of Science and Technology(Medical Sciences);2014年02期
5 方立;陳美芳;余國(guó)龍;肖智林;陳曉彬;謝秀梅;;內(nèi)皮祖細(xì)胞對(duì)血管平滑肌細(xì)胞增殖的影響[J];中南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版);2010年01期
6 陳琴;黃銘涵;江時(shí)森;徐標(biāo);;丹參多酚酸鹽修復(fù)糖基化終產(chǎn)物引起的晚期EPCs功能障礙及其分子機(jī)制[J];中國(guó)中西醫(yī)結(jié)合雜志;2010年06期
7 ;A novel vWF A3-GPI modified EPCs to enhance its adhesion ability to collegen[J];Journal of Medical Colleges of PLA;2011年04期
8 李巧;冉海濤;王志剛;鐘世根;凌智瑜;李攀;李興升;陳慶偉;;超聲微泡聯(lián)合Ad-EGFP/HIF-1α介導(dǎo)EPCs歸巢大鼠缺血心肌[J];中國(guó)醫(yī)學(xué)影像技術(shù);2010年11期
9 常柏;李春深;;EPCs移植治療DR的研究新進(jìn)展[J];實(shí)用糖尿病雜志;2012年04期
10 王航;尹揚(yáng)光;李巍;鄧夢(mèng)楊;康華麗;秦浙學(xué);王強(qiáng);盧巍;劉潔;黃嵐;;過(guò)表達(dá)PDGFR-β的EPCs調(diào)控血管不良重構(gòu)[J];中國(guó)病理生理雜志;2012年11期
相關(guān)會(huì)議論文 前10條
1 Alex F.Chen;;GTPCH I Overexpression Ameliorates Impaired EPCs Function in Type 1 Diabetes[A];中國(guó)藥理學(xué)會(huì)第十次全國(guó)學(xué)術(shù)會(huì)議?痆C];2009年
2 崔斌;黃嵐;;eNOS基因修飾EPCs移植抑制損傷血管過(guò)度增殖改善血管內(nèi)皮功能[A];第十三次全國(guó)心血管病學(xué)術(shù)會(huì)議論文集[C];2011年
3 ;Dynamic Changes and Significance of Circulating EPCs、VWF and TM in Patients with Traumatic Brain Injury[A];2011中華醫(yī)學(xué)會(huì)神經(jīng)外科學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2011年
4 冉海濤;李巧;王志剛;鐘世根;凌智瑜;李攀;李興升;陳慶偉;;超聲微泡聯(lián)合Ad-EGFP/HIF-1α介導(dǎo)EPCs歸巢大鼠缺血心肌的實(shí)驗(yàn)研究[A];第十屆全國(guó)超聲心動(dòng)圖學(xué)術(shù)會(huì)議論文[C];2010年
5 張曉蕓;崔曉棟;官秀梅;李宏;成敏;;穩(wěn)定細(xì)胞骨架對(duì)EPCs功能的影響[A];中國(guó)生理學(xué)會(huì)第九屆全國(guó)青年生理學(xué)工作者學(xué)術(shù)會(huì)議論文摘要[C];2011年
6 李巧;李興升;王志剛;冉海濤;鐘世根;凌智瑜;李攀;陳慶偉;;超聲微泡聯(lián)合Ad-EGFP/HIF-1α介導(dǎo)EPCs移植治療大鼠心肌梗死的研究[A];第十屆全國(guó)超聲心動(dòng)圖學(xué)術(shù)會(huì)議論文[C];2010年
7 何智輝;;5-雜氮-2‘-脫氧胞苷對(duì)CSES所致EPCs功能及其Sca-1表達(dá)的影響[A];中華醫(yī)學(xué)會(huì)呼吸病學(xué)年會(huì)——2013第十四次全國(guó)呼吸病學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2013年
8 楊瑞瑞;杜怡峰;郭守剛;;VEGF動(dòng)員內(nèi)源性EPCs促進(jìn)MCAO/R小鼠神經(jīng)功能修復(fù)[A];山東省2013年神經(jīng)內(nèi)科學(xué)學(xué)術(shù)會(huì)議暨中國(guó)神經(jīng)免疫大會(huì)2013論文匯編[C];2013年
9 霍亞南;黎金鳳;;SDF-1對(duì)糖尿病患者外周血EPCs功能影響的研究[A];江西省中西醫(yī)結(jié)合學(xué)會(huì)內(nèi)分泌專業(yè)委員會(huì)第二次學(xué)術(shù)會(huì)議、內(nèi)分泌與代謝性疾病中西醫(yī)結(jié)合診治新進(jìn)展學(xué)習(xí)班資料匯編[C];2013年
10 崔曉棟;張曉蕓;李宏;官秀梅;李鑫;成敏;;流體剪切應(yīng)力對(duì)EPCs生物學(xué)特性的影響[A];第十屆全國(guó)生物力學(xué)學(xué)術(shù)會(huì)議暨第十二屆全國(guó)生物流變學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2012年
相關(guān)重要報(bào)紙文章 前1條
1 民涇;EPCs捕獲技術(shù)改善支架生物相容性[N];醫(yī)藥經(jīng)濟(jì)報(bào);2003年
相關(guān)博士學(xué)位論文 前10條
1 Shah Ourban Ali;家禽EPCs分離培養(yǎng)及HGF對(duì)炎癥環(huán)境下EPCs功能的影響[D];浙江大學(xué);2015年
2 尉輝杰;阿托伐他汀動(dòng)員EPCs延緩顱內(nèi)動(dòng)脈瘤發(fā)展的機(jī)制及降低栓塞后復(fù)發(fā)的潛在價(jià)值[D];天津醫(yī)科大學(xué);2016年
3 葉家欣;強(qiáng)化他汀治療促進(jìn)EPCs動(dòng)員改善心肌缺血的臨床和基礎(chǔ)研究[D];南京醫(yī)科大學(xué);2012年
4 陳飛蘭;內(nèi)皮祖細(xì)胞(EPCs)在膠質(zhì)瘤微血管構(gòu)筑表型異質(zhì)性形成中的作用及其機(jī)制研究[D];第三軍醫(yī)大學(xué);2008年
5 楊兆華;內(nèi)皮祖細(xì)胞(EPCs)對(duì)移植性動(dòng)脈硬化的作用及其機(jī)制研究[D];復(fù)旦大學(xué);2009年
6 王航;過(guò)表達(dá)PDGFR-β的EPCs在損傷血管修復(fù)中作用研究[D];第三軍醫(yī)大學(xué);2012年
7 崔斌;eNOS基因修飾EPCs移植與損傷內(nèi)膜修復(fù)的實(shí)驗(yàn)研究[D];第三軍醫(yī)大學(xué);2008年
8 譚虎;vWF A3-GPI強(qiáng)化EPCs富集及其在損傷血管壁修復(fù)中作用的實(shí)驗(yàn)研究[D];第三軍醫(yī)大學(xué);2008年
9 況春燕;STIM1/TRPC1復(fù)合體對(duì)EPCs修復(fù)損傷血管能力的影響[D];第三軍醫(yī)大學(xué);2011年
10 喻楊;血管損傷修復(fù)中CCNI對(duì)EPCs功能的影響及其機(jī)制研究[D];第三軍醫(yī)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 孫麗娜;Visfatin對(duì)內(nèi)皮祖細(xì)胞凋亡的影響及其機(jī)制探討[D];河北醫(yī)科大學(xué);2015年
2 薛國(guó)能;用于捕獲和歸巢EPCs的Fucoidan與CD133抗體/SDF-1復(fù)合生物涂層的構(gòu)建[D];西南交通大學(xué);2015年
3 南偉;不同來(lái)源的EPCs對(duì)NSCs增殖分化的影響[D];蘭州大學(xué);2016年
4 鄭淑欣;負(fù)載骨髓MSCs和/或EPCs的羊膜支架修復(fù)犬長(zhǎng)段尿道缺損的研究[D];西北農(nóng)林科技大學(xué);2016年
5 陳晨;犬骨髓EPCs的分離、鑒定和標(biāo)記及組織工程化尿道的構(gòu)建[D];西北農(nóng)林科技大學(xué);2016年
6 郭軍;mICAM-1在MSCs和EPCs間黏附作用的研究[D];石河子大學(xué);2016年
7 王照飛;CXCR4過(guò)表達(dá)HUCB-late EPCs移植對(duì)后肢缺血組織血管新生的實(shí)驗(yàn)研究[D];湖南師范大學(xué);2016年
8 劉歡;EPCs與BMSCs復(fù)合細(xì)胞膜片促進(jìn)放療區(qū)種植體骨結(jié)合的實(shí)驗(yàn)研究[D];第四軍醫(yī)大學(xué);2016年
9 朱耀;桃紅四物湯對(duì)大鼠創(chuàng)傷性股骨頭缺血壞死模型外周血中EPCs表達(dá)影響的研究[D];湖南中醫(yī)藥大學(xué);2016年
10 陳春媛;人EPCs來(lái)源外泌體修復(fù)糖尿病大鼠皮膚缺損的作用及機(jī)制[D];南昌大學(xué);2016年
,本文編號(hào):1940389
本文鏈接:http://sikaile.net/yixuelunwen/nfm/1940389.html