高糖環(huán)境下NCoR siRNA對(duì)骨髓間充質(zhì)干細(xì)胞成骨分化調(diào)控的實(shí)驗(yàn)研究
本文選題:骨髓間充質(zhì)干細(xì)胞 + NCoR ; 參考:《山東大學(xué)》2017年碩士論文
【摘要】:研究背景:骨髓間充質(zhì)干細(xì)胞(BMSCs)具有分化成不同細(xì)胞組織的能力,其中包括成骨細(xì)胞,脂肪細(xì)胞,軟骨細(xì)胞以及肌細(xì)胞。體外培養(yǎng)骨髓間充質(zhì)干細(xì)胞的相關(guān)研究中發(fā)現(xiàn),在合適的環(huán)境和條件下,骨髓間充質(zhì)干細(xì)胞能夠在體外進(jìn)行34—42次的分裂增殖,增殖過程中始終保持梭形并呈漩渦狀排列。不僅如此,骨髓間充質(zhì)干細(xì)胞在冷凍保存進(jìn)行復(fù)蘇后,仍然具備干細(xì)胞的特性。BMSCs不僅存在于骨髓中,還游離于骨組織外。當(dāng)其在適當(dāng)信號(hào)刺激時(shí),可游離出骨組織,到達(dá)效應(yīng)靶器官組織中,這種生物學(xué)行為叫"歸巢"。在適當(dāng)?shù)纳锖臀锢硪蛩嘏c足夠的特異性信號(hào)傳導(dǎo)的存在,BMSCs能夠分化成所需的特定細(xì)胞組織。由于這些性質(zhì),BMSC已經(jīng)成為肌肉骨骼組織再生治療研究的主要細(xì)胞來源。BMSCs分化成骨細(xì)胞受細(xì)胞外信號(hào)和轉(zhuǎn)錄水平的級(jí)聯(lián)放大調(diào)控,這需要大量基因表達(dá)之間的精細(xì)時(shí)空調(diào)節(jié)。研究表明,原發(fā)性成骨分化誘導(dǎo)主要由Runt相關(guān)轉(zhuǎn)錄因子2(Runx2)關(guān)鍵轉(zhuǎn)錄因子調(diào)控。Runx2激活和調(diào)節(jié)成骨作為許多信號(hào)通路的靶基因,包括但不限于轉(zhuǎn)化生長(zhǎng)因子-β(TGF-b1),骨形態(tài)發(fā)生蛋白(BMP),Winglesstype1(Wnt),Hedgehog(HH)和(Nel)樣蛋白1型(NELL-1)。誘導(dǎo)后,成骨細(xì)胞分化下游的前成骨細(xì)胞分化成成骨細(xì)胞,成骨細(xì)胞成熟和基質(zhì)礦化的過程受其他轉(zhuǎn)錄因子調(diào)節(jié),包括Osterix,BSP,OCN和OPN。這個(gè)過程也受到許多其他物理和生物因素的影響,其中大多數(shù)已經(jīng)在體外證明,并且仍然在仔細(xì)審查。影響B(tài)MSCs的增殖和成骨分化的物理因素,如高葡萄糖,已經(jīng)很好地建立并通過幾個(gè)體外研究證明。臨床證據(jù)表明,與正常人相比,糖尿病患者的骨折不愈合和延遲愈合更高,此外糖尿病患者早期骨質(zhì)疏松的發(fā)生率高。最近的體外研究已經(jīng)證明高葡萄糖微環(huán)境降低細(xì)胞BMP的表達(dá),細(xì)胞BMP是成骨分化的終末期期間的重要調(diào)節(jié)蛋白,因此抑制該過程。進(jìn)一步了解高葡萄糖對(duì)骨代謝的負(fù)面影響并設(shè)計(jì)減輕這種合并癥的方法的研究正在進(jìn)行。核受體輔助抑制因子(nuclear receptor corepressor,NCoR)屬于核受體輔助抑制因子,通過與許多其它轉(zhuǎn)錄因子(包括NF-Eb,AKT和PPARα)相互作用而發(fā)揮各種抑制功能。近年來發(fā)現(xiàn)NCoR可以與HDAC結(jié)合成復(fù)合物,通過影響蛋白的轉(zhuǎn)錄,在機(jī)體代謝、炎癥以及腫瘤發(fā)生中扮演著重要角色。JinZ報(bào)道HDAC9與視黃酸和甲狀腺激素受體(SMRT)/NCoR共抑制因子的沉默介體協(xié)同抑制PPARγ活性,并將HDAC9鑒定為骨重建和骨骼穩(wěn)態(tài)的重要和生理學(xué)相關(guān)的調(diào)節(jié)劑。最近,YiQin證明NCoR在標(biāo)準(zhǔn)成骨培養(yǎng)基中通過P13K/AKT細(xì)胞信號(hào)通路調(diào)節(jié)大鼠間充質(zhì)干細(xì)胞的成骨分化。因此,在高葡萄糖微環(huán)境下,NCoR基因敲除對(duì)BMSCs的成骨分化的作用是什么?研究目的:觀察NCoRsiRNA對(duì)BMSCs在高葡萄糖微環(huán)境下增殖和成骨分化的影響。研究方法:1、根據(jù)NCoRsiRNA靶位點(diǎn)的選擇原則,從GenBank數(shù)據(jù)庫(kù)中擇優(yōu)選取三條siRNA序列,通過構(gòu)建干擾及過表達(dá)載體,篩選出最佳序列。2、檢測(cè)NCoR對(duì)BMSCs在高葡萄糖微環(huán)境下增殖的影響。在96孔板上按1×106/孔接種大鼠BMSCs,設(shè)置空白對(duì)照組、陰性對(duì)照組(無(wú)目標(biāo)siRNA和NCoRsiRNA組,每組設(shè)3復(fù)孔。從轉(zhuǎn)染后第1天開始,達(dá)到65%的匯合后,將細(xì)胞樣品在含有5.5,16.5,25和35mmol/L葡萄糖濃度的成骨培養(yǎng)基中培養(yǎng)。培養(yǎng)9天后,使用甲基噻唑基四唑(MTT)測(cè)定細(xì)胞增殖,并在490nm測(cè)定吸光度。3、觀察NCoR對(duì)大鼠BMSCs誘導(dǎo)成骨分化的影響。在含有25mmol/L(高葡萄糖)和5.5mmol/L葡萄糖(對(duì)照)的成骨培養(yǎng)基中分別培養(yǎng)用NCoRsiRNA或無(wú)目標(biāo)siRNA轉(zhuǎn)染的細(xì)胞21天,然后通過測(cè)量細(xì)胞ALP活性,鈣沉積RT-PCR檢測(cè)相關(guān)成骨基因;Run2,Osterix,OCN,OPN和BSP的表達(dá),來測(cè)定成骨分化。結(jié)果:1、成功構(gòu)建了 NCoRsiRNA及無(wú)目標(biāo)siRNA質(zhì)粒載體,并篩選了最佳干擾序列,載體由廣州Cyagen生物科技公司合成。2、NCoRsiRNA可使BMSCs的增殖降低。用NCoRsiRNA或無(wú)目標(biāo)siRNA轉(zhuǎn)染的BMSCs在含有四個(gè)不同葡萄糖濃度(5.5,16.5,25和35mmol/L)的成骨培養(yǎng)基中培養(yǎng)。與對(duì)照組相比,第1d三組細(xì)胞增殖差異不大。從第3d開始,在所用葡萄糖濃度,NCoRsiRNA組細(xì)胞數(shù)量及增殖明顯低于對(duì)照組。提示NCoR可促進(jìn)BMSCs增殖。3、NCoRsiRNA可在高葡萄糖下促進(jìn)BMSCs的成骨分化。與對(duì)照組相比,通過ALP-ELISA試劑盒和鈣診斷試劑盒測(cè)定的,NCoRsiRNA組細(xì)胞的ALP活性以及礦化(鈣沉淀)在25mmol/L(高葡萄糖)和5.5mmol/L葡萄糖下都明顯增加。此外,實(shí)時(shí)RT-PCR對(duì)成骨分化相關(guān)的五個(gè)基因Run2,Osterix,OCN,OPN和BSP的檢測(cè)顯示,與對(duì)照組相比,NCoRsiRNA組Run2,Osterix,OCN,OPN和BSP表達(dá)都顯著增加(P0.01)。提示NCoR負(fù)性調(diào)控大鼠BMSCs的成骨分化。結(jié)論:我們利用RNA干擾技術(shù)成功設(shè)計(jì)并構(gòu)建了 NCoR基因特異性的小干擾siRNA,以及設(shè)計(jì)并構(gòu)建了無(wú)目標(biāo)siRNA。經(jīng)證實(shí),基因沉默的效果良好。我們成功將NCoRsiRNA和無(wú)目標(biāo)siRNA轉(zhuǎn)染至大鼠骨髓間充質(zhì)干細(xì)胞內(nèi),并證實(shí)轉(zhuǎn)染效率較高,然后在四個(gè)不同葡萄糖濃度下(5.5,16.5,25和35mmol/L)的成骨培養(yǎng)基中培養(yǎng)。然后檢測(cè)BMSCs的增殖發(fā)現(xiàn),NCoRsiRNA組BMSCs的增殖明顯下降,提示NCoR可促進(jìn)BMSCs的增殖。沉默NCoR時(shí),在正常(5.5mmol/L)和高糖(25mmol/L)濃度下,大鼠BMSCs誘導(dǎo)成骨分化,成骨細(xì)胞分化標(biāo)志基因Run2,Osterix,OCN,OPN和BSP的表達(dá)明顯增強(qiáng)。提示NCoR負(fù)性調(diào)控大鼠BMSCs的成骨分化。結(jié)合糖濃度分析,NCoR siRNA可中和高糖對(duì)大鼠BMSCs成骨分化的抑制作用。綜合既往研究,NCoR siRNA能改善機(jī)體胰島素敏感性,NCoR可作為潛在靶點(diǎn),在糖尿病病人中改善機(jī)體胰島素敏感性,降糖的同時(shí),保護(hù)糖尿病患者骨質(zhì)疏松。
[Abstract]:Background: bone marrow mesenchymal stem cells (BMSCs) have the ability to differentiate into different cellular tissues, including osteoblasts, adipocytes, chondrocytes, and myocytes. In the study of bone marrow mesenchymal stem cells in vitro, bone marrow mesenchymal stem cells can carry out 34 - 42 in the suitable environment and conditions. In addition, after the resuscitation of cryopreservation, bone marrow mesenchymal stem cells still possess the characteristics of stem cells, not only in the bone marrow, but also free from the bone tissue. When the stem cells are stimulated by proper signal,.BMSCs can free the bone tissue and reach the effect target. In the official organization, this biological behavior is called "homing". In the presence of adequate biological and physical factors and sufficient specific signal transduction, BMSCs can differentiate into specific cellular tissues required. Because of these properties, BMSC has become a major cell source for the study of musculoskeletal tissue regeneration,.BMSCs differentiation into osteoblasts from cells. Cascade amplification regulation of signal and transcriptional levels requires fine space-time regulation between a large number of gene expressions. Studies have shown that primary osteogenic differentiation is induced by Runt related transcription factor 2 (Runx2) key transcription factors to regulate.Runx2 activation and regulation of bone formation as a target gene for many signaling pathways, including but not limited to transformation growth factors. Sub beta (TGF-b1), bone morphogenetic protein (BMP), Winglesstype1 (Wnt), Hedgehog (HH) and (Nel) like protein 1 (NELL-1). After induction, osteoblasts are differentiated into osteoblasts downstream of osteoblast differentiation, and the process of osteoblast maturation and matrix mineralization is regulated by other transcription factors, including Osterix, BSP, OCN, and OPN.. The effects of many other physical and biological factors, most of which have been proven in vitro, are still under scrutiny. Physical factors affecting the proliferation and osteogenesis of BMSCs, such as Hyperglucose, have been well established and proved by several in vitro studies. Clinical evidence suggests that the fracture nonunion of diabetic patients is compared with normal people. And delayed healing is higher, in addition to the high incidence of early osteoporosis in diabetic patients. Recent in vitro studies have shown that hyperglycemic microenvironment reduces the expression of cell BMP, and cell BMP is an important regulatory protein during the end stage of osteogenic differentiation, thus inhibiting the process. The study of methods designed to mitigate this complication is ongoing. Nuclear receptor corepressor (NCoR) is a nuclear receptor auxiliary inhibitor, which plays a variety of inhibitory functions by interacting with many other transcription factors (including NF-Eb, AKT and PPAR alpha). In recent years, it is found that NCoR can be combined with HDAC. Compounds, by influencing the transcription of protein, play an important role in body metabolism, inflammation, and oncology,.JinZ reports that HDAC9 is synergistic to inhibit PPAR gamma activity with retinoic acid and thyroid hormone receptor (SMRT) /NCoR co suppressor, and to identify HDAC9 as an important and physiological regulation of bone remodeling and bone homeostasis Recently, YiQin has shown that NCoR regulates the osteogenic differentiation of rat mesenchymal stem cells by P13K/AKT cell signaling pathway in the standard osteogenic medium. So, what is the effect of NCoR knockout on the osteogenic differentiation of BMSCs in the Hyperglucose microenvironment? The purpose of this study was to observe the proliferation and formation of BMSCs in the Hyperglucose microenvironment of BMSCs. The effect of bone differentiation. 1. According to the selection principle of NCoRsiRNA target site, three siRNA sequences were selected from the GenBank database, and the optimal sequence.2 was screened by constructing the interference and overexpression vector. The effect of NCoR on the proliferation of BMSCs in the hyperglycemic microenvironment was detected. The rat BMSCs was inoculated on the 96 orifice plate by 1 x 106/ holes. In the blank control group, the negative control group (no target siRNA and NCoRsiRNA group, each set 3 compound holes. After first days after transfection, the cell samples were cultured in the osteogenic medium containing 5.5,16.5,25 and 35mmol/L glucose concentration. After 9 days, the cell proliferation was measured using methyl thiazolidazole four azoles (MTT), and 490nm was measured. " The effect of NCoR on the osteogenic differentiation induced by BMSCs in rats was observed. The cells transfected with NCoRsiRNA or non target siRNA were cultured in the osteogenic medium containing 25mmol/L (high glucose) and 5.5mmol/L glucose (control) for 21 days, and then by measuring the cell ALP activity, calcium deposition RT-PCR was used to detect the related osteogenic genes; Run2, Osterix, OCN, and OCN. The expression of PN and BSP to determine osteogenic differentiation. Results: 1, NCoRsiRNA and non target siRNA plasmid vectors were successfully constructed, and the optimal interference sequence was screened. The carrier was synthesized from.2 in Guangzhou Cyagen biotechnology company, NCoRsiRNA could reduce the proliferation of BMSCs. BMSCs in NCoRsiRNA or non target siRNA was contained in four different glucose concentrations ( 5.5,16.5,25 and 35mmol/L were cultured in the osteogenic medium. Compared with the control group, there was little difference in cell proliferation in the group 1D Three. From 3D, the number and proliferation of cells in the NCoRsiRNA group were significantly lower than that in the control group. It suggests that NCoR can promote BMSCs proliferation.3, NCoRsiRNA can promote the osteogenesis of BMSCs under high glucose. Compared with the ALP-ELISA kit and the calcium diagnostic kit, the ALP activity of the NCoRsiRNA group and the mineralization (calcium precipitation) were significantly increased under 25mmol/L (high glucose) and 5.5mmol/L glucose. In addition, the real-time RT-PCR for the five genes related to osteogenesis differentiation, Run2, Osterix, OCN, OPN and BSP, showed that the control group was with the control group. The expression of Run2, Osterix, OCN, OPN and BSP in the NCoRsiRNA group increased significantly (P0.01). It suggests that NCoR negatively regulates the osteogenic differentiation of BMSCs in rats. Conclusion: we successfully designed and constructed the small interference siRNA of NCoR gene by RNA interference technique, and the design and construction of a non target gene have proved that the effect of gene silencing is good. NCoRsiRNA and non target siRNA were successfully transfected into rat bone marrow mesenchymal stem cells and confirmed that the transfection efficiency was high and then cultured in the osteogenic medium of four different glucose concentrations (5.5,16.5,25 and 35mmol/L). Then the proliferation of BMSCs was detected, and the proliferation of BMSCs in the NCoRsiRNA group decreased significantly, suggesting that NCoR promoted the increase of BMSCs. At the concentration of normal (5.5mmol/L) and high glucose (25mmol/L), rat BMSCs induced osteogenic differentiation, and the expression of osteoblast differentiation marker gene Run2, Osterix, OCN, OPN and BSP increased obviously at the concentration of normal (5.5mmol/L) and high glucose (25mmol/L), suggesting that NCoR negatively regulated the osteogenic differentiation of BMSCs rats. In a comprehensive study, NCoR siRNA can improve the body's insulin sensitivity. NCoR can be a potential target for improving the body's insulin sensitivity and reducing glucose in diabetic patients, while protecting the osteoporosis in diabetic patients.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R587.1;R580
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 卞泗善;肖毅;徐展望;;骨髓間充質(zhì)干細(xì)胞成骨分化的研究進(jìn)展[J];內(nèi)蒙古中醫(yī)藥;2013年31期
2 王運(yùn)濤;骨髓間充質(zhì)干細(xì)胞成骨分化調(diào)控的研究進(jìn)展[J];國(guó)外醫(yī)學(xué)(生物醫(yī)學(xué)工程分冊(cè));2003年01期
3 井燕;李良;李毅;陳孟詩(shī);吳文超;陳槐卿;劉小菁;;力學(xué)應(yīng)變對(duì)大鼠骨髓間充質(zhì)干細(xì)胞增殖和成骨分化能力的影響[J];生物醫(yī)學(xué)工程學(xué)雜志;2006年03期
4 崔向榮;蘇偉;黃釗;覃萬(wàn)安;;電磁場(chǎng)促進(jìn)骨髓間充質(zhì)干細(xì)胞成骨分化的研究進(jìn)展[J];中國(guó)醫(yī)學(xué)物理學(xué)雜志;2011年04期
5 彭飛;鄭亞東;徐西強(qiáng);虞冀哲;吳華;;620nm低能量紅光對(duì)骨髓間充質(zhì)干細(xì)胞成骨分化的影響[J];激光生物學(xué)報(bào);2011年03期
6 趙領(lǐng)洲;劉麗;吳織芬;;微米坑/納米管氧化鈦形貌對(duì)骨髓間充質(zhì)干細(xì)胞成骨分化的作用[J];醫(yī)學(xué)爭(zhēng)鳴;2012年04期
7 楊姣;夏雷;湯郁;陸化;費(fèi)小明;;腫瘤壞死因子預(yù)處理促進(jìn)骨髓間充質(zhì)干細(xì)胞成骨分化潛能[J];南京醫(yī)科大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年03期
8 王晶;張洹;;-80℃一步法凍存對(duì)成人骨髓間充質(zhì)干細(xì)胞成骨分化能力的影響[J];廣東醫(yī)學(xué);2007年03期
9 陳翠平;羅新;;17β-雌二醇對(duì)大鼠骨髓間充質(zhì)干細(xì)胞成骨分化的作用[J];中國(guó)骨質(zhì)疏松雜志;2007年05期
10 ;骨髓間充質(zhì)干細(xì)胞的成骨分化[J];中國(guó)組織工程研究與臨床康復(fù);2010年10期
相關(guān)會(huì)議論文 前10條
1 鄭亮;鄭雅元;崔燎;劉鈺瑜;;四羥基二苯乙烯-2-O-β-D-葡萄糖苷對(duì)大鼠骨髓間充質(zhì)干細(xì)胞成骨分化的作用及機(jī)制研究[A];中華醫(yī)學(xué)會(huì)第七次全國(guó)骨質(zhì)疏松和骨礦鹽疾病學(xué)術(shù)會(huì)議論文匯編[C];2013年
2 吳江;陳槐卿;K-LP.SUNG;;鈦顆粒負(fù)荷影響骨髓間充質(zhì)干細(xì)胞成骨分化能力的機(jī)理[A];全國(guó)首屆青年復(fù)合材料學(xué)術(shù)交流會(huì)論文集[C];2007年
3 吳江;陳槐卿;李良;尹光福;K-L P.SUNG;;鈦顆粒負(fù)荷影響骨髓間充質(zhì)干細(xì)胞成骨分化能力的機(jī)理[A];中國(guó)復(fù)合材料學(xué)術(shù)研討會(huì)論文集[C];2005年
4 陳海嘯;洪盾;萬(wàn)曉晨;李繼承;;腸毒素C聯(lián)合維生素C對(duì)骨髓間充質(zhì)干細(xì)胞成骨分化的影響研究[A];2008年浙江省骨科學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2008年
5 袁風(fēng)紅;鄒耀紅;高愷言;俞可佳;;地塞米松對(duì)體外人骨髓基質(zhì)細(xì)胞增殖及成骨分化的影響[A];全國(guó)自身免疫性疾病專題研討會(huì)暨第十一次全國(guó)風(fēng)濕病學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2006年
6 宋忠臣;束蓉;董家辰;李松;;低氧對(duì)牙周膜成纖維細(xì)胞增殖和成骨分化的影響[A];第十次全國(guó)牙周病學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2014年
7 董家辰;束蓉;宋忠臣;;炎癥微環(huán)境對(duì)人牙周膜成纖維細(xì)胞增殖與成骨分化的影響[A];第十次全國(guó)牙周病學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2014年
8 孫楠;楊力;張振;張樺;陳宏;蔡德鴻;;晚期氧化蛋白產(chǎn)物對(duì)大鼠骨髓間充質(zhì)干細(xì)胞增殖及向成骨分化的影響[A];中華醫(yī)學(xué)會(huì)第十二次全國(guó)內(nèi)分泌學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2013年
9 馬雪;孟靜茹;賈敏;王寧;胡靜;周穎;羅曉星;;胰高血糖素樣肽-1類似物對(duì)大鼠骨髓間充質(zhì)干細(xì)胞增殖與成骨分化的影響[A];第十一屆全國(guó)青年藥學(xué)工作者最新科研成果交流會(huì)論文集[C];2012年
10 林和敏;;成骨分化的人臍血間充質(zhì)干細(xì)胞免疫原性研究[A];2013年全國(guó)激光醫(yī)學(xué)學(xué)術(shù)聯(lián)合會(huì)議暨2013年浙江省醫(yī)學(xué)會(huì)整形美容學(xué)術(shù)年會(huì)論文匯編[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 龔逸明;microRNAs調(diào)控Satb2介導(dǎo)的骨髓基質(zhì)干細(xì)胞成骨分化的作用研究[D];復(fù)旦大學(xué);2014年
2 李松濤;EphB信號(hào)在軸向仿生壓應(yīng)力調(diào)控MSC成骨分化中的作用和機(jī)制研究[D];第三軍醫(yī)大學(xué);2015年
3 方文;純鈦表面WNT信號(hào)通路調(diào)控BMSCs成骨分化的機(jī)制研究[D];浙江大學(xué);2014年
4 劉世宇;移植外源性MSCs持久恢復(fù)宿主MSCs功能的機(jī)制研究[D];第四軍醫(yī)大學(xué);2015年
5 張莉;Fgfr2~(S252W/+)小鼠骨量、骨結(jié)構(gòu)特性及BMSCs成骨分化調(diào)控機(jī)制的研究[D];第三軍醫(yī)大學(xué);2015年
6 劉旭杰;材料性質(zhì)調(diào)控干細(xì)胞成骨分化及殼聚糖基骨修復(fù)材料[D];清華大學(xué);2015年
7 文采;多孔礦化水凝膠材料誘導(dǎo)人胚胎干細(xì)胞成骨分化的研究[D];東南大學(xué);2015年
8 吳毛;胸腰段椎體骨折形態(tài)與椎管狹窄相關(guān)性研究及Sclerostin對(duì)成骨分化的影響[D];蘇州大學(xué);2016年
9 黃江;激活HIF-1α對(duì)骨折愈合的影響及誘導(dǎo)miR-429對(duì)MC3T3-E1細(xì)胞成骨分化的作用機(jī)制[D];首都醫(yī)科大學(xué);2016年
10 侯秋科;龜板有效成分促間充質(zhì)干細(xì)胞成骨分化的miRNA-VDR網(wǎng)絡(luò)機(jī)制[D];廣州中醫(yī)藥大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 吳小瑩;腦源性神經(jīng)營(yíng)養(yǎng)因子對(duì)人脂肪干細(xì)胞增殖與成骨分化的作用[D];北京協(xié)和醫(yī)學(xué)院;2015年
2 秦子順;淫羊藿苷對(duì)人牙周膜干細(xì)胞的增殖和成骨分化的影響[D];蘭州大學(xué);2015年
3 劉可;miR-106bE靶向調(diào)控BMP2參與間充質(zhì)干細(xì)胞成骨分化與體內(nèi)骨形成[D];蘇州大學(xué);2015年
4 付雪杰;MSCs與去分化MSCs在成骨分化過程中免疫原性上調(diào)的研究[D];蘇州大學(xué);2015年
5 崔陽(yáng)陽(yáng);蛋白激酶C在小鼠骨髓間充質(zhì)干細(xì)胞成骨分化中的作用研究[D];新鄉(xiāng)醫(yī)學(xué)院;2015年
6 嚴(yán)一杰;體外誘導(dǎo)人腎間質(zhì)成纖維細(xì)胞成骨分化的實(shí)驗(yàn)研究[D];廣西醫(yī)科大學(xué);2015年
7 高羽萱;直流微電場(chǎng)對(duì)種植體周骨髓間充質(zhì)干細(xì)胞遷移和成骨影響的研究[D];中國(guó)人民解放軍醫(yī)學(xué)院;2015年
8 郭中豪;甲狀旁腺激素對(duì)大鼠骨髓間充質(zhì)干細(xì)胞成骨分化的影響[D];山西醫(yī)科大學(xué);2015年
9 李慧垠;高脂環(huán)境下大鼠BMSCs成骨分化過程中Wnt通路相關(guān)因子的表達(dá)變化[D];山東大學(xué);2015年
10 聶曉萌;MicroRNA靶向Id1對(duì)BMSCs成骨分化的影響[D];山東大學(xué);2015年
,本文編號(hào):1804963
本文鏈接:http://sikaile.net/yixuelunwen/nfm/1804963.html