兔腦死亡狀態(tài)下供體肝臟及腎臟質(zhì)量評估研究
[Abstract]:China has become the second major organ transplant after the United States. The survival rate of transplant recipients is also close to or reached the international advanced level. However, the lack of human organ sources has become a serious bottleneck restricting the development of transplantation. In order to integrate with the international community, the former national Ministry of health and the Chinese Red tenth character association have joined up in the 16 provinces and autonomous regions of the country. Brain death donors will gradually replace death prisoners and become the main source of organ transplantation in the next two years. However, due to a large number of clinical studies, brain death donors have a poor short-term or long term prognosis compared with living relative or cadaver organ transplantation. Brain death donor organs have hemodynamic changes, inflammatory factors release, cell apoptosis, coagulation factor consumption, endocrine and hormonal changes and other pathophysiological changes, which seriously affect the quality of brain death donor organs, which will be the key problem that restricts the widespread use of brain death donor organs.
Objective: to establish a highly simulated clinical, scientific and stable animal model of rabbit brain death, to explore the mechanism of liver and kidney injury induced by brain death in rabbits, to find a sensitive index for evaluating the liver and kidney of brain dead donors, and to provide a direction for improving the liver and kidney quality of brain dead donors.
Methods: (1) 40 healthy male New Zealand rabbits were randomly divided into the sham operation group and the brain death group at 12 weeks old. Each group was set up 2,4,6 and 8h (n=5) because of the duration of brain death. The sham operation group was followed by femoral artery intubation, tracheal intubation, and cranioplasty, and no intracranial pressure brain death was performed, and continued to the end of the brain death group. In the brain death group, the femoral artery intubation, tracheal intubation, cranial drilling, and slow intracranial pressure brain death were performed in the brain death group. The ventilator maintained the brain death state to the time point. The biological function experiment system, the animal ventilator and the intelligent constant temperature controller were used to monitor the heart rate and respiration of the brain death state and maintenance of the rabbit brain during the operation. The mean arterial pressure and electroencephalogram were collected. Serum and liver and kidney tissue samples were collected from each group at 2,4,6 and 8h after brain death.
(2) the liver function indexes of 2,4,6 and 8h groups in the brain death group and the sham operation group were detected respectively, ALT and AST, and the renal function indexes BUN and Cr. were observed by light microscope to observe the morphological changes of liver and kidney tissues at different time points. The serum IL-1 beta, IL-6, IL-8, TNF- alpha levels were detected by ELISA kit. The liver and kidney were detected by immunohistochemical method. The number of apoptosis in liver cells and renal cells was detected by ICAM, HSP70.TUNEL, and the effect of brain death on the quality of donor liver and kidney was evaluated.
(3) in order to further systematically evaluate the mechanism of brain death organ damage to the brain death donor of these factors or proteins, we screened and identified the existence of brain dead liver and kidney tissue and sham operation group by means of proteomics, bi-directional gel electrophoresis, biological mass spectrometry and bioinformatics database analysis. Differential protein expression was detected by Western blot, and the differential protein RUNX1 expression in liver was verified by immunohistochemistry. The difference of PHB in renal differential protein was verified by immunohistochemistry.
Results: (1) a new model of New Zealand rabbit brain death model was established for the first time. A new model of brain death in New Zealand rabbits was established. In the process of modeling, the increase of intracranial pressure in the brain death group was significantly higher than that of the sham operation group (P0.05) when the intracranial pressure rose abruptly to the peak, but after a period of brain death, the brain death decreased to the highest level. There was no significant difference in the center rate of the brain death after the death of the brain (0.01). The heart rate of the brain death group was significantly lower than that of the sham operation group (P0.01) after the brain death was 2H.
(2) there was no obvious change in liver function and shape in 6h after the death of New Zealand rabbit, but after 8h, the liver function ALT, AST changed obviously (P0.05), and the liver cells were obviously balloon like, the hepatic sinusoids were pressed, no obvious hepatic cord structure, and there were a lot of infiltration of the lymphocytic cells in the sinks and some focal necrosis. The brain died after 4h, although BUN died of BUN The change of the value of the kidney was not obvious (P0.05), but the renal Cr increased significantly (P0.05), the renal tubule cells were obviously edema, the vacuolar degeneration was also increased, some of the proximal convoluted tubules were obliterated, and the expression of.IL-1 beta, IL-6, IL-8 and TNF-a in the inflammation was gradually rising, and the indexes of 8h group after brain death were obviously higher than that of the sham operation group (P0.05). The inflammation related factor ICAM was in the case of ICAM. Gradually increased (P0.05), HSP70 expression was downregulated (P0.05), and the number of apoptotic cells increased significantly (P0.05).
(3) proteomics techniques can be successfully screened and identified as proteins with large differences in the liver after brain death: mitochondrial aldehyde dehydrogenase, peroxidase 6,3 phosphoric acid kinase 1,3- mercapto pyruvate thiotransferase, ethanol dehydrogenase, two hydropyrimidase phase protein 4, Runt related transcription factor 1, inorganic pyrophosphatase, The regulated subunits of the glutamate cysteine ligase and the particle cytochrome B5. are mainly related to cell proliferation and differentiation, substance metabolism, detoxification, antioxidation and redox regulation. The larger proteins of the kidney are inhibin, PRP38 premRNA treatment factor 38, calcineurin B1, V-type substance. The subunit ATP subunit C1, NADH dehydrogenase subunit 10, peroxidase 3, N- acetaminophen galactotransferase, membrane adhesion protein 5, superoxide dismutase, and cytochrome b-c1 complex subunit 1. are mainly related to proliferation and differentiation, signal transduction, protein processing and modification, electron transfer chain and redox related. The expression of RUNX1 in the liver is associated with the brain The prolongation of death time decreased (P0.05). The expression of PHB in kidney increased gradually with the prolongation of brain death time (P0.05).
Conclusion: the New Zealand rabbit brain death model established in this paper is a scientific, highly simulated rabbit brain death model, which is worthy of the promotion and reference of other brain dead animal experiments.
In the early days after the death of the rabbit brain, the liver and kidney function had not changed significantly, but the complicated pathophysiological changes related to the inflammatory reaction and apoptosis have affected the quality of the liver and kidney of the brain dead rabbits.
The expression of RUNX1 in the liver may be a sensitive index for evaluating the quality of the liver after the death of the rabbit, but the mechanism of its action remains to be further studied. The expression of PHB in the kidney may be a sensitive molecular marker for the evaluation of kidney quality after the death of the rabbit brain, which provides a new way of thinking for the clinical search for a new method to improve the quality of the renal death donor kidney.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:R699.2;R657.3
【相似文獻】
相關(guān)期刊論文 前10條
1 ;中國生理學(xué)會腎臟生理專業(yè)委員會第二屆學(xué)術(shù)年會日程安排及征文通知(第一輪)[J];生理科學(xué)進展;2013年02期
2 ;認(rèn)識腎臟[J];人人健康;2013年03期
3 肖兵民;血管緊張素Ⅱ受體在腎臟中的分布與功能[J];醫(yī)學(xué)綜述;2001年04期
4 勞方元,劉衛(wèi)民;瘦素與腎臟[J];醫(yī)師進修雜志;2004年17期
5 孫穎浩;高旭;;腎臟下盞結(jié)石及其處理[J];醫(yī)學(xué)研究通訊;2004年05期
6 耿文學(xué),宮澤輝;血管緊張素Ⅱ受體2對心血管腎臟系統(tǒng)功能的影響[J];國外醫(yī)學(xué).藥學(xué)分冊;2005年03期
7 郭駿,程川,鄭立泉;自發(fā)性腎臟破裂的診斷與治療(附4例報告并文獻復(fù)習(xí))[J];泰山醫(yī)學(xué)院學(xué)報;2005年04期
8 陳新石;;首個“世界腎臟日”新聞發(fā)布會在北京舉行[J];中華醫(yī)學(xué)雜志;2006年12期
9 賈俊亞;丁國華;;腎臟中腎素-血管緊張素系統(tǒng)的生理和病理生理作用[J];生理科學(xué)進展;2008年01期
10 李古強;高宏偉;王召友;;適宜運動對老年人腎臟的影響[J];臨床合理用藥雜志;2009年14期
相關(guān)會議論文 前10條
1 王輝;徐玉蓮;;有氧及無氧訓(xùn)練對腎臟功能的影響[A];第十屆全軍檢驗醫(yī)學(xué)學(xué)術(shù)會議論文匯編[C];2005年
2 殷勝勇;葛霽光;郭淼;;灌流腎臟的生理功能動態(tài)變化[A];中國生物醫(yī)學(xué)工程學(xué)會第六次會員代表大會暨學(xué)術(shù)會議論文摘要匯編[C];2004年
3 殷勝勇;葛霽光;郭淼;;腎臟長期灌流損傷功能的內(nèi)在機理研究[A];中國生物醫(yī)學(xué)工程學(xué)會第六次會員代表大會暨學(xué)術(shù)會議論文摘要匯編[C];2004年
4 李慶文;汪盛;張青川;方習(xí)武;周文生;劉建民;;腹腔鏡輔助小切口技術(shù)切除無功能炎癥性腎臟[A];華東六省一市泌尿外科學(xué)術(shù)年會暨2011年浙江省泌尿外科、男科學(xué)學(xué)術(shù)年會論文匯編[C];2011年
5 常波;衣雪潔;張錦紅;于媚娟;;急性運動對大鼠腎臟線粒體鈣運輸?shù)挠绊慬A];2002年第9屆全國運動醫(yī)學(xué)學(xué)術(shù)會議論文摘要匯編[C];2002年
6 邢寶麗;;老年患者的合理用藥[A];第七屆全國老年醫(yī)學(xué)進展學(xué)術(shù)會議論文集[C];2007年
7 于泓;;腎臟臨床-病理討論[A];貴州省醫(yī)學(xué)會腎臟病學(xué)分會2008年學(xué)術(shù)年會論文匯編[C];2008年
8 陳以平;;腎臟間質(zhì)病變治療經(jīng)驗[A];第七屆全國中西醫(yī)結(jié)合腎臟病會議專題講座匯編[C];2003年
9 季健;馬超龍;;烏司他丁對缺血再灌注損傷大鼠腎臟ICAM-1表達的影響[A];第十五屆全國泌尿外科學(xué)術(shù)會議論文集[C];2008年
10 宮念樵;陳知水;明長生;張偉杰;周平;陳剛;林正斌;曾凡軍;盧峽;施輝波;陳松;蔣繼貧;;應(yīng)用Lifeport機械灌注冷保存腎臟供體的經(jīng)驗[A];2013中國器官移植大會論文匯編[C];2013年
相關(guān)重要報紙文章 前10條
1 慈照;你的腎臟疲倦了嗎?[N];醫(yī)藥養(yǎng)生保健報;2006年
2 張鴻;中老年人腎臟檢查一年一次[N];醫(yī)藥養(yǎng)生保健報;2007年
3 項燕;保護腎臟從飲食做起[N];醫(yī)藥養(yǎng)生保健報;2007年
4 和煦;如何關(guān)愛自己的腎臟[N];上?萍紙;2008年
5 徐曉羽 本報記者 張曉祺;保護腎臟從點滴做起[N];解放軍報;2009年
6 ;老年人保護腎臟五要點[N];人民政協(xié)報;2001年
7 韓紹安;腎臟在呼救 你注意到了嗎[N];衛(wèi)生與生活報;2007年
8 譚合欽;關(guān)愛您的腎臟[N];中國中醫(yī)藥報;2007年
9 ;人到老年腎臟有何改變[N];醫(yī)藥養(yǎng)生保健報;2008年
10 許陵東 江蘇省中醫(yī)院腎內(nèi)科;善待你的腎臟[N];中國中醫(yī)藥報;2009年
相關(guān)博士學(xué)位論文 前10條
1 梁亮;何學(xué)紅教授學(xué)術(shù)思想總結(jié)及腎衰方治療慢性腎臟病的臨床與實驗研究[D];遼寧中醫(yī)藥大學(xué);2015年
2 韋榮飛;泛素連接酶NEDL2的生理功能及分子機制研究[D];清華大學(xué);2015年
3 李典耕;青—老年大鼠腎臟交互移植模型的構(gòu)建及機體內(nèi)環(huán)境衰老關(guān)鍵因子的研究[D];中國人民解放軍醫(yī)學(xué)院;2016年
4 陳福坤;犬腎臟損害對房顫凝血及內(nèi)皮功能的影響[D];中國人民解放軍醫(yī)學(xué)院;2016年
5 杜冰;兔腦死亡狀態(tài)下供體肝臟及腎臟質(zhì)量評估研究[D];武漢大學(xué);2014年
6 賈露露;利用蛋白質(zhì)組學(xué)研究腎臟蛋白處理功能[D];北京協(xié)和醫(yī)學(xué)院;2011年
7 丁瑞;青年和老年大鼠腎臟互相移植引起的內(nèi)環(huán)境改變對腎臟衰老的影響[D];中國人民解放軍軍醫(yī)進修學(xué)院;2008年
8 梁卓;腎臟損害和房顫發(fā)生的相關(guān)性和機制研究[D];中國人民解放軍醫(yī)學(xué)院;2015年
9 石瑩;尾加壓素Ⅱ在自發(fā)性高血壓大鼠心血管系統(tǒng)和腎臟的表達及對其腎臟功能的影響[D];復(fù)旦大學(xué);2007年
10 藍榮培;金屬硫蛋白保護腎臟缺血/再灌注損傷及對免疫系統(tǒng)的影響[D];復(fù)旦大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 梁慧;大鼠腎臟缺血再灌注損傷過程中水通道蛋白-2的表達變化[D];河北醫(yī)科大學(xué);2015年
2 李艷婷;CKD患者AASI及Sym-AASI與腎臟動脈阻力指數(shù)的相關(guān)性研究[D];昆明醫(yī)科大學(xué);2015年
3 宋波;低分子肝素及尿激酶改善DCD腎臟對長時間熱缺血耐受的實驗研究[D];第三軍醫(yī)大學(xué);2015年
4 宋菲;炎癥小體在衰老腎臟中的表達變化研究[D];中國人民解放軍醫(yī)學(xué)院;2015年
5 徐春艷;AT_1受體自身抗體促腎臟內(nèi)質(zhì)網(wǎng)應(yīng)激致足細(xì)胞凋亡機制研究[D];南方醫(yī)科大學(xué);2015年
6 張思夢;膳食鈣對飲水型氟暴露致子代腎臟線粒體損傷的影響[D];浙江師范大學(xué);2015年
7 焦瑾;H型高血壓患者同型半胱氨酸對腎臟功能的影響[D];新疆醫(yī)科大學(xué);2015年
8 姚丹丹;他克莫司對2型糖尿病大鼠腎臟TRPC6表達的影響[D];青島大學(xué);2015年
9 盧鵬;復(fù)方靈芝健腎湯對糖尿病腎病大鼠腎臟AGT和IGF-1表達的影響[D];濟南大學(xué);2015年
10 李雷兵;溫陽消飲法對胸腔積液大鼠腎臟AQP2及cAMP-PKA/PKC信號通路表達的影響[D];成都中醫(yī)藥大學(xué);2015年
,本文編號:2122017
本文鏈接:http://sikaile.net/yixuelunwen/mjlw/2122017.html