膀胱移行上皮細(xì)胞種植改性脫細(xì)胞小腸粘膜下基質(zhì)在家兔尿道重建中的應(yīng)用
本文選題:過(guò)氧乙酸 + 小腸粘膜下基質(zhì); 參考:《華中科技大學(xué)》2016年博士論文
【摘要】:尿道缺損是泌尿外科的最常見(jiàn)的疾病之一,可發(fā)生于先天性疾病如尿道下裂、尿道上裂等疾病,也可以發(fā)生于尿道損傷、感染,常伴有損傷后的尿道纖維化瘢痕狹窄。短段的尿道狹窄也可以通過(guò)尿道擴(kuò)張、尿道狹窄切開(kāi)及尿道狹窄段切除加端端吻合術(shù)予以治療。然而,長(zhǎng)段的尿道狹窄或者尿道缺損,需要進(jìn)行移植物進(jìn)行修補(bǔ)。目前,臨床上常用的移植物包括舌粘膜、頰粘膜及陰莖皮膚。然而,口腔粘膜的取材會(huì)帶來(lái)一定的并發(fā)癥,如張口困難、感染、潰瘍、麻木、疼痛等。另外,長(zhǎng)段的尿道狹窄術(shù)后易復(fù)發(fā),對(duì)于該類患者,往往面臨取材來(lái)源不夠。因此,需要尋求更廣泛來(lái)源的尿道替代移植物。組織工程技術(shù)的迅速發(fā)展,為尿道重建提供了新的治療途徑。然而,Chapple等最近認(rèn)為在組織工程技術(shù)大規(guī)模的應(yīng)用于臨床之前應(yīng)該繼續(xù)研究以尋找出更加合適的組織工程材料。目前,報(bào)道較多組織工程材料的主要包括化學(xué)合成材料、天然生物基質(zhì)類材料、天然生物材料的提取物,以及不同類材料的聚合物。其中,小腸粘膜下基質(zhì)(SIS)屬天然生物基質(zhì)類材料,具有天然的細(xì)胞與組織兼容性,且含括膠原、纖維連接蛋白、GAG及生長(zhǎng)因子和信號(hào)蛋白等,能促進(jìn)細(xì)胞生長(zhǎng)與遷移。但其結(jié)構(gòu)致密,不利于營(yíng)養(yǎng)液的滲透與代謝物質(zhì)的交換。另外,該類基質(zhì)常規(guī)脫細(xì)胞后仍具有少量的異體細(xì)胞核成分的殘余,會(huì)引起宿主的慢性炎癥反應(yīng)。理想的組織工程支架材料應(yīng)該具有三維(3D)多孔結(jié)構(gòu)及最少的異體細(xì)胞核成份的殘余。本實(shí)驗(yàn)通過(guò)過(guò)氧乙酸氧化SIS制作出具有3D多孔結(jié)構(gòu)的改性SIS,同時(shí)也最大限度地去除了異體的細(xì)胞核成分殘余。我們進(jìn)一步評(píng)價(jià)膀胱移行細(xì)胞種植這種經(jīng)過(guò)氧乙酸(Peracetic acid, PAA)改性的小腸粘膜下基質(zhì)(SIS)在家兔尿道重建中的應(yīng)用效果。本研究共分以下三部分:第一部分:PAA改性脫細(xì)胞SIS基質(zhì)的制備目的:制作出3D多孔的SIS支架材料,并評(píng)估其表征、力學(xué)性能方法:取新鮮的豬小腸組織,機(jī)械方法游離出粘膜下層及漿肌層,去除上皮層,分離出小腸粘膜下基質(zhì),置入蒸餾水預(yù)脫細(xì)胞處理,PAA改性SIS組加5%過(guò)氧乙酸(PAA),而無(wú)PAA改性組加PBS液,然后兩組均置入1%Triton X-100。最后75%乙醇消毒,無(wú)菌純凈水保存?zhèn)溆谩H〔男蠬E、MASSON染色、掃描電鏡觀察。應(yīng)用密度瓶法測(cè)定兩組基質(zhì)材料的空隙率。取材大小5mmx60mm,使用萬(wàn)能試驗(yàn)機(jī)測(cè)定其力學(xué)性能,包括最大拉長(zhǎng)、最大強(qiáng)度及楊模量大小。統(tǒng)計(jì)分析兩組SIS材料在形態(tài)學(xué)和力學(xué)性能間的差異。結(jié)果:未經(jīng)PAA處理的SIS結(jié)構(gòu)致密,且有少量細(xì)胞成分殘余,而經(jīng)PAA處理的SIS呈3D多孔狀,幾乎沒(méi)有細(xì)胞核成分殘余。SIS的上皮面電鏡結(jié)果顯示經(jīng)5%PAA處理SIS表面孔徑明顯增加,經(jīng)過(guò)測(cè)量分析后,脫細(xì)胞新鮮SIS的孔徑值為1.75±0.32μm,而經(jīng)過(guò)PAA氧化處理后的SIS孔徑值為5.16±1.831μm,無(wú)PAA處理的SIS空隙率為18.5±2.6%,而經(jīng)過(guò)PAA處理后的SIS空隙率66.8±3.9%,兩者差異均具有顯著統(tǒng)計(jì)學(xué)意義(P0.01)。經(jīng)萬(wàn)能拉伸儀測(cè)定,脫細(xì)胞無(wú)PAA處理SIS及經(jīng)PAA處理的SIS的最大拉伸率分別為16.3±1.6%和15.0±1.2%,最大拉伸強(qiáng)度分別為35.1±7.2 Mpa和24.3±5.6 Mpa,楊氏模量分別為150.4±39.2Mp和118.5±28.4Mpa.結(jié)論:經(jīng)PAA改性的后的SIS具有3D多孔狀結(jié)構(gòu),幾乎無(wú)異體細(xì)胞核成分殘余,且仍能維持一定的機(jī)械性能,可以作為理想的組織工程材料。第二部分:組織工程膀胱移行上皮細(xì)胞-SIS復(fù)合物的體外構(gòu)建目的:體外構(gòu)建膀胱移行上皮細(xì)胞-改性SIS復(fù)合物,觀察其形態(tài)、評(píng)估改性SIS的細(xì)胞兼容性。方法:取成年新西蘭大白兔膀胱壁0.6x0.6 cm,置入PBS液漂洗。將膀胱組織塊置入含有DMEM培養(yǎng)基的pronase E蛋白酶中,消化過(guò)夜,小心刮取膀胱粘膜層移行上皮細(xì)胞。加含有5%胎牛血清、1%青霉素-鏈霉素的ECM培養(yǎng)基培養(yǎng),0.05%胰酶?jìng)鞔。制作?xì)胞爬片,應(yīng)用抗AE1/AE3抗體進(jìn)行細(xì)胞免疫組織化學(xué)鑒定。制作PAA改性SIS支架材料和非PAA改性SIS支架材料浸提液,行MTT實(shí)驗(yàn)記錄兩組細(xì)胞生長(zhǎng)的OD值,了解兩組支架材料的細(xì)胞兼容性。收集細(xì)胞并種植于預(yù)先制好的PAA改性SIS支架材料和非PAA改性的SIS支架材料上,繼續(xù)培養(yǎng)至2周,取材行HE染色、電鏡觀察。利用RT-PCR技術(shù)和Western-blot技術(shù)檢測(cè)Uroplakin基因在UC-經(jīng)PAA改性SIS復(fù)合物的表達(dá)變化。結(jié)果:膀胱移行上皮細(xì)胞在無(wú)PAA處理SIS及5%PAA處理后SIS浸提液中生長(zhǎng)狀態(tài)良好,且均優(yōu)于單純ECM培養(yǎng)基的趨勢(shì),但是差異均無(wú)統(tǒng)計(jì)學(xué)意義(p=0.35)。無(wú)PAA處理SIS組細(xì)胞生長(zhǎng)以單層結(jié)構(gòu)為常見(jiàn),而在5%PAA處理后SIS組中,細(xì)胞生長(zhǎng)連接成片,形成2-3層的復(fù)層結(jié)構(gòu)。電鏡下,無(wú)PAA處理SIS上細(xì)胞呈多角形,扁平狀,伸出偽足,緊密貼附于支架材料上。而在5%PAA處理SIS支架上,細(xì)胞分布更加緊密,相互融合呈多層面三維立體結(jié)構(gòu),表層細(xì)胞多呈圓形、橢圓形及立方形。經(jīng)PAA改性SIS-UC復(fù)合物較無(wú)PAA改性-UC復(fù)合物高表達(dá)Uroplakin基因。結(jié)論:采用酶消化法聯(lián)合機(jī)械的刮擦法能分離培養(yǎng)具有活性的膀胱移行上皮細(xì)胞,陽(yáng)性表達(dá)AE1/AE3。未經(jīng)PAA處理的脫細(xì)胞SIS與經(jīng)5%PAA改性處理SIS支架材料與膀胱移行上皮細(xì)胞均具有良好的細(xì)胞兼容性。經(jīng)5%PAA改性處理SIS能更好的促進(jìn)細(xì)胞在支架材料上生長(zhǎng)并形成復(fù)層結(jié)構(gòu),且能促進(jìn)膀胱移行上皮向終末分化。第三部分:組織工程膀胱移行上皮-SIS復(fù)合物修補(bǔ)家兔尿道缺損模型的建立與重建效果觀察目的:觀察組織工程膀胱移行上皮-SIS復(fù)合物修補(bǔ)家兔尿道缺損的效果方法:健康成年新西蘭家兔18只,分成三組,膀胱移行上皮細(xì)胞種植PAA改性的SIS支架組、膀胱移行細(xì)胞種植無(wú)PAA改性的SIS材料組,無(wú)膀胱上皮細(xì)胞種植的經(jīng)PAA改性SIS組,每組各6只。按照第二部分的方法,構(gòu)建組織工程膀胱上皮細(xì)胞-SIS復(fù)合物。再次麻醉家兔,游離腹側(cè)尿道海綿體至粘膜層,建立家兔尿道粘膜缺損模型1.5×0.8cm2,修剪支架材料大小為1.7×1cm2,以補(bǔ)片的方式進(jìn)行修補(bǔ)。術(shù)后抗感染、尿管沖洗,手術(shù)后半年行尿道造影檢查,大體病理觀察及HE、MASSON、免疫組化檢測(cè)。結(jié)果:上皮細(xì)胞-5% PAA改性SIS復(fù)合物組均存活,尿道通暢,再生尿道粘膜完全再生。病理見(jiàn)復(fù)層移行上皮、上皮下平滑肌增生,血管增生。而上皮細(xì)胞-無(wú)PAA改性SIS復(fù)合物組,有尿瘺發(fā)生,再生尿道粘膜不完整。病理見(jiàn)上皮不規(guī)則,及慢性炎癥細(xì)胞浸潤(rùn)。單純PAA改性SIS組有尿道狹窄,尿道粘膜蒼白、僵硬、攣縮,病理提示大量纖維結(jié)締組織增生,平滑肌和血管少見(jiàn)。上皮細(xì)胞-PAA改性SIS組的上皮及平滑肌表達(dá)定量顯著優(yōu)于上皮細(xì)胞-無(wú)PAA改性組(P0.05)。平滑肌及血管均優(yōu)于單純PAA改性SIS組(P0.05)結(jié)論:膀胱移行上皮細(xì)胞種植PAA改性SIS是進(jìn)行長(zhǎng)段尿道缺損修補(bǔ)的理想替代物。
[Abstract]:Urethral defect is one of the most common diseases in the Department of urology. It can occur in congenital diseases such as hypospadias, hypospadias and other diseases. It can also occur in urethral injury, infection, and urethral fibrosis scar stricture after injury. Short segment urethral stricture can also be treated with urethral dilatation, urethral stricture incision and urethral stricture excision. However, long segment urethral strictures or urethral defects need to be repaired by graft. Currently, the commonly used graft includes the mucosa of the tongue, the buccal mucosa, and the penis skin. However, the selection of the oral mucosa will bring some complications, such as oral difficulty, infection, ulcers, numbness, pain and so on. Long segment urethral stricture is easy to relapse. For this type of patients, it is often faced with insufficient sources of material. Therefore, a more extensive source of urethral replacement graft is needed. The rapid development of tissue engineering technology provides a new way of treatment for urethral reconstruction. However, Chapple and so on are most recently considered to be applied in a large scale in tissue engineering. The bed should continue to be studied to find more appropriate tissue engineering materials. At present, most of the reports of tissue engineering materials include chemical synthetic materials, natural biomaterials, extracts of natural biomaterials, and polymers of different materials. Among them, the submucosal matrix of the small intestine (SIS) is a natural biomaterial. It has natural cell and tissue compatibility, including collagen, fibronectin, GAG and growth factors and signal proteins, which can promote cell growth and migration. But the structure is dense and is not conducive to the infiltration of nutrient solution and the exchange of metabolic substances. In addition, this type of matrix often has a small number of allogenic cell nuclear components. The residual, cause the chronic inflammatory response of the host. The ideal tissue engineering scaffold material should have a three-dimensional (3D) porous structure and the least residual cell nuclear components. In this experiment, the modified SIS with 3D porous structure was produced by oxidation of peroxy acetic acid, and the residual cell nuclear components were removed to the maximum extent. We further evaluate the effect of Peracetic acid (PAA) modified small intestinal submucosal matrix (SIS) in the reconstruction of urethra in rabbits. This study is divided into three parts: Part I: preparation of PAA modified decellular SIS matrix: the preparation of 3D porous SIS scaffold materials, and evaluation of SIS Its characterization and mechanical properties: taking fresh pig small intestine tissue, removing the submucosa and muscularis layer mechanically, removing the epithelial layer, separating the submucous matrix of the small intestine, placing the distilled water preconditioning, the PAA modified SIS group and 5% peracetic acid (PAA), without the PAA modified group and PBS solution, and then placing the two groups in the final 75% of the X-100. 75%. HE, MASSON dyeing and scanning electron microscopy were used to determine the void ratio of two groups of matrix materials by density bottle method. The mechanical properties of the material were measured by the universal test machine, including the maximum elongating, maximum strength and young modulus. The morphology and force of the two groups of SIS materials were statistically analyzed. The results showed that the structure of SIS without PAA treatment was compact, and there was a small amount of residual cell components, while SIS treated with PAA was 3D multi pore, and there was almost no residual.SIS in the upper surface of the cell nucleus with electron microscopy. The pore size of SIS was obviously increased by 5%PAA treatment, and the pore size of the fresh SIS was 1.7 after measurement and analysis. 5 + 0.32 mu m, and after PAA oxidation, the SIS aperture value is 5.16 + 1.831 mu m, the SIS void ratio without PAA treatment is 18.5 + 2.6%, and the SIS void ratio after PAA treatment is 66.8 + 3.9%, and the difference is statistically significant (P0.01). The maximum tensile strength is 16.3 + 1.6% and 15 + 1.2% respectively, the maximum tensile strength is 35.1 + 7.2 Mpa and 24.3 + 5.6 Mpa respectively. The young's modulus is 150.4 + 39.2Mp and 118.5 + 28.4Mpa., respectively. After PAA modification, the SIS has 3D porous structure, and there is almost no residual cell nuclear composition, and still can maintain a certain mechanical properties, which can be used as an ideal group. Fabric engineering material. Second part: Construction of tissue engineering bladder transitional epithelial cell -SIS complex in vitro purpose: construct bladder transitional epithelial cell - modified SIS complex in vitro, observe its morphology, evaluate the cell compatibility of modified SIS. Methods: take 0.6x0.6 cm of adult New Zealand white rabbit bladder wall, put into the PBS solution and rinse the bladder group. The fabric was inserted into the pronase E protease containing the DMEM medium, digested for the night and carefully scraped the bladder mucosa layer to move the epithelial cells. The ECM medium containing 5% fetal bovine serum, 1% penicillin - streptomycin, 0.05% trypsin passages, and the cell climbing tablets were made, and the anti AE1/AE3 antibody was applied to the cellular immuno histochemical identification. The PAA modified SIS branch was made. The scaffold material and the non PAA modified SIS scaffold were extracted, and the MTT experiment was used to record the OD values of two groups of cell growth. The cell compatibility of the two groups of scaffolds was understood. The cells were collected and cultivated on the pre made PAA modified SIS scaffold material and the non PAA modified SIS scaffold material, and continued to be cultured for 2 weeks. R and Western-blot techniques were used to detect the changes in the expression of Uroplakin gene in UC- via PAA modified SIS complex. Results: the growth state of the bladder transitional epithelial cells in the SIS extract without PAA treatment SIS and 5%PAA was better than that of the pure ECM medium, but the difference was not statistically significant (p=0.35). Cell growth is common in single layer structure, and in SIS group after 5%PAA treatment, cell growth is connected to pieces to form 2-3 layers of complex layer structure. Under electron microscope, the cells on SIS without PAA treatment are polygonal, flat, protruding and attached to the scaffold material. On the 5%PAA treatment SIS scaffold, the cells are more closely distributed and multilayered with each other. The surface cells are mostly round, oval and cubic. The PAA modified SIS-UC complex is more expressed than the Uroplakin gene without the PAA modified -UC complex. Conclusion: the enzyme digestion method combined with mechanical scraping can separate and culture the active cell cell of the bladder transitional epithelium, and the positive expression of AE1/AE3. has not been refined by PAA treatment. Cell SIS and 5%PAA modified SIS scaffold materials have good cellular compatibility with bladder transitional epithelial cells. 5%PAA modified SIS can better promote cell growth on scaffold material and form complex layer structure, and can promote the differentiation of bladder transitional epithelium to terminal differentiation. Third parts: tissue engineered bladder transitional epithelium -SIS compound Objective: To observe the effect of reconstruction and reconstruction of rabbit urethral defect model for repairing the rabbit urethra defect: observe the effect of tissue engineering bladder transitional epithelium -SIS complex to repair rabbit urethral defect: 18 healthy adult New Zealand rabbits were divided into three groups, the bladder transitional epithelial cells were planted with PAA modified SIS stents, and the implantation of bladder transitional cells was not modified by PAA. In the sex SIS group, no bladder epithelial cells were implanted in the PAA modified SIS group, each group was 6. The -SIS complex of the tissue engineered bladder epithelial cells was constructed according to the second part method. The rabbits were again anesthetized, free ventral urethral cavernous body to mucous layer, and the rabbit urethral mucosa defect model was set up 1.5 x 0.8cm2, the size of the pruning scaffold material was 1.7 X. 1cm2, repair with patch. After operation, anti infection, urethral rinse, half a year after the operation, urethrography examination, gross pathological observation and HE, MASSON, immunohistochemical detection. Results: epithelial cells -5% PAA modified SIS complex group survived, urethral smooth, regenerated urethral mucous membrane completely regenerated. Pathological findings of the epithelium, epithelial smooth epithelium, smooth epithelial smooth Muscle hyperplasia, vascular hyperplasia, and epithelial cells - no PAA modified SIS complex group, the occurrence of urinary fistula, regenerative urethral mucosa incomplete. Pathological epithelial irregular, and chronic inflammatory cell infiltration. Simple PAA modified SIS group with urethral stricture, urethral mucosa pale, rigid, contracture, a large number of fibrous connective tissue hyperplasia, smooth muscle, and less blood vessels The expression of epithelial and smooth muscle in the -PAA modified SIS group was significantly better than that of the epithelial cell without the PAA modified group (P0.05). The smooth muscle and blood vessels were superior to those of the PAA modified SIS group (P0.05). The implantation of PAA modified SIS in the transitional cell of the bladder was an ideal substitute for the repair of long segment urethral defects.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:R318.08;R699.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈海波;潘俊;陳方;;輸尿管無(wú)細(xì)胞基質(zhì)移植物的制備和評(píng)價(jià)[J];中國(guó)組織工程研究與臨床康復(fù);2009年44期
2 國(guó)生輝,金巖,張勇杰,劉鵬,沈楠,王彥亮;異種去細(xì)胞組織工程化神經(jīng)支架的制備與形態(tài)學(xué)研究[J];臨床口腔醫(yī)學(xué)雜志;2005年10期
3 李宇琳;周恒;劉廣鵬;崔磊;;茜素紅半定量測(cè)定細(xì)胞基質(zhì)鈣含量的實(shí)驗(yàn)研究[J];組織工程與重建外科雜志;2008年02期
4 章建康;用于生產(chǎn)生物技術(shù)/生物制品的細(xì)胞基質(zhì)的來(lái)源和檢定[J];國(guó)外醫(yī)學(xué).預(yù)防.診斷.治療用生物制品分冊(cè);1998年06期
5 劉海霞;顏永年;王小紅;程捷;林峰;熊卓;吳任東;;基于細(xì)胞-基質(zhì)材料受控組裝技術(shù)的類肝組織構(gòu)建[J];科學(xué)通報(bào);2006年12期
6 楊鳳鄉(xiāng);;細(xì)胞的超微結(jié)構(gòu)[J];青海醫(yī)學(xué)院通訊;1978年01期
7 吳剛;靳風(fēng)爍;張克勤;李黔生;;豬膀胱無(wú)細(xì)胞基質(zhì)的制備及其對(duì)異種血清的反應(yīng)性[J];中國(guó)臨床康復(fù);2006年01期
8 顏永年,劉海霞,熊卓,程捷,王小紅,林峰,吳任東,王常勇;細(xì)胞直接受控組裝技術(shù)的實(shí)現(xiàn)與研究進(jìn)展[J];科學(xué)通報(bào);2005年11期
9 胡玲;張?jiān)S?高長(zhǎng)有;;聚合物納米粒子的結(jié)構(gòu)和性能對(duì)胞吞和細(xì)胞功能的影響[J];化學(xué)進(jìn)展;2009年06期
10 王元天,許純孝;無(wú)細(xì)胞基質(zhì)移植物在動(dòng)物膀胱重建中的應(yīng)用[J];國(guó)外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊(cè);2000年02期
相關(guān)會(huì)議論文 前2條
1 ;細(xì)胞與分子生物學(xué)[A];中國(guó)解剖學(xué)會(huì)2008年年會(huì)論文文摘匯編[C];2008年
2 納濤;袁寶珠;;建立細(xì)胞種屬鑒別和種屬間細(xì)胞交叉污染的快速有效檢測(cè)方法[A];2013年中國(guó)藥學(xué)大會(huì)暨第十三屆中國(guó)藥師周論文集[C];2013年
相關(guān)博士學(xué)位論文 前4條
1 張龍;膀胱移行上皮細(xì)胞種植改性脫細(xì)胞小腸粘膜下基質(zhì)在家兔尿道重建中的應(yīng)用[D];華中科技大學(xué);2016年
2 譚學(xué)新;組織工程化頜下腺細(xì)胞與膠原海綿支架材料相互作用的實(shí)驗(yàn)研究[D];中國(guó)醫(yī)科大學(xué);2004年
3 李鵬高;甘薯貯藏蛋白的抗癌活性及其機(jī)制研究[D];中國(guó)農(nóng)業(yè)科學(xué)院;2012年
4 袁銘;豬膀胱無(wú)細(xì)胞基質(zhì)生物學(xué)特性及犬體內(nèi)膀胱替代修復(fù)的實(shí)驗(yàn)研究[D];中國(guó)協(xié)和醫(yī)科大學(xué);2007年
相關(guān)碩士學(xué)位論文 前3條
1 白智龍;左氧氟沙星對(duì)大鼠纖維環(huán)細(xì)胞的毒性作用的體外研究[D];河北醫(yī)科大學(xué);2015年
2 董教明;辛基吡喃葡萄糖苷作為新型環(huán)保的去細(xì)胞試劑制備組織工程支架的研究[D];東華大學(xué);2013年
3 蔣立仲;去細(xì)胞心臟支架的制備和鑒定[D];華中科技大學(xué);2010年
,本文編號(hào):1817316
本文鏈接:http://sikaile.net/yixuelunwen/mjlw/1817316.html